Темы

C Cеквенирование E E1b1b G I I1 I2 J J1 J2 N N1c Q R1a R1b Y-ДНК Австролоиды Альпийский тип Америнды Англия Антропологическая реконструкция Антропоэстетика Арабы Арменоиды Армия Руси Археология Аудио Аутосомы Африканцы Бактерии Балканы Венгрия Вера Видео Вирусы Вьетнам Гаплогруппы Генетика человека Генетические классификации Геногеография Германцы Гормоны Графики Греция Группы крови ДНК Деградация Демография в России Дерматоглифика Динарская раса Дравиды Древние цивилизации Европа Европейская антропология Европейский генофонд ЖЗЛ Живопись Животные Звёзды кино Здоровье Знаменитости Зодчество Иберия Индия Индоарийцы Интеръер Иран Ирландия Испания Исскуство История Италия Кавказ Канада Карты Кельты Китай Корея Криминал Культура Руси Латинская Америка Летописание Лингвистика Миграция Мимикрия Мифология Модели Монголоидная раса Монголы Мт-ДНК Музыка для души Мутация Народные обычаи и традиции Народонаселение Народы России Наши Города Негроидная раса Немцы Нордиды Одежда на Руси Ориентальная раса Основы Антропологии Основы ДНК-генеалогии и популяционной генетики Остбалты Переднеазиатская раса Пигментация Политика Польша Понтиды Прибалтика Природа Происхождение человека Психология РАСОЛОГИЯ РНК Разное Русская Антропология Русская антропоэстетика Русская генетика Русские поэты и писатели Русский генофонд Русь США Семиты Скандинавы Скифы и Сарматы Славяне Славянская генетика Среднеазиаты Средниземноморская раса Схемы Тохары Тураниды Туризм Тюрки Тюрская антропогенетика Укрология Уралоидный тип Филиппины Фильм Финляндия Фото Франция Храмы Хромосомы Художники России Цыгане Чехия Чухонцы Шотландия Эстетика Этнография Этнопсихология Юмор Япония генетика интеллект научные открытия неандерталeц

Поиск по этому блогу

воскресенье, 20 ноября 2011 г.

Достижения и особенности в работе с древней ДНК и ДНК из сложных криминалистических образцов (Фрагмент)

От Редактора: Данная статья была опубликована в журналеActa naturae № 3 2009. С любезного разрешения Редакции журнала, публикуем часть статьи.
Исследования древней ДНК, извлеченной из музейных образцов, археологических и палеонтологических находок, начали развиваться 25 лет назад с определения последовательности нуклеотидов (секвенирования) коротких фрагментов митохондриальной ДНК (мтДНК). Развитие методов экстракции и анализа нуклеиновых кислот позволило перейти к реконструкции полных митохондриальных геномов в древних останках. Это позволило делать заключения не только о самих организмах, вымерших десятки тысяч лет назад, но и об их популяциях и эволюции. Сейчас удается секвенировать участки ядерного генома вымерших организмов (мамонт, неандерталец) и делать заключения об их фенотипических признаках. Исследования древней ДНК стали уникальным инструментом проверки эволюционных гипотез и комплексной реконструкции истории изменений биоты. Особое внимание привлекают исследования ДНК из человеческих останков, позволяющие восстановить историю взаимоотношений различных популяций древних людей. Выявились методические особенности и проблемы, специфичные для работы с древней ДНК. Это сверхмалые количества и фрагментированность ДНК в древних образцах, а также наличие химических модификаций, блокирующих репликацию древней ДНК in vitro, либо приводящих к появлению в ней постмортальных мутаций. Те же особенности и проблемы выявились и при анализе ДНК в ряде особо сложных случаев молекулярно-генетической экспертизы криминалистических образцов (необходимость анализа сверхмалых количеств ДНК, загрязненной ДНК или ДНК, разрушенной химическими или термическими воздействиями), что осложняет или делает невозможным получение экспериментальных данных и/или их интерпретацию. Анализ этих проблем и подходы к их разрешению представлены в данном обзоре.

Список сокращений:
  • мтДНК – митохондриальная ДНК,
  • пмтДНК – полная последовательность мтДНК,
  • STR – короткие тандемные повторы.
Некоторые термины:
  • контаминация - загрязнение исследуемого образца (в данном случае, посторонними молекулами ДНК)
  • клонирование - многократное копирование целой молекулы или фрагмента ДНК
  • репликация - процесс копирования ДНК
  • секвенирование - расшифровка нуклеотидной последовательности молекулы ДНК. В результате получается символьная последовательность, описывающая структуру молекулы.
  • амплификация ДНК - процесс, увеличивающий число копий фрагмента или целой молекулы ДНК по сравнению с обычным для организма уровнем
  • деградация ДНК - процесс распада, разложения молекулы ДНК

Введение

Рис. 1. Необычно высокая сохранность ДНК мамонта M. primigenius, найденного в 1986 г. в вечной мерзлоте в долине реки Энмынвеем (Западная Чукотка): а – свечение ядер мышечных клеток мамонта M. primigenius (возраст около 33 000 лет) при окрашивании флуоресцентным красителем DAPI, свидетельствующее о хорошей сохранности ДНК; б – электрофореграмма тотальной геномной ДНК, выделенной из мышечных клеток мамонта (на дорожку 1 нанесено в 10 раз меньшее количество ДНК, чем на дорожку 2), и контрольной тотальной ДНК из свежеполученных образцов крови человека (дорожки 3 и 4). Правая дорожка – маркер (размер фрагментов указан в т.п.н.) [13]
Рис. 1. Необычно высокая сохранность ДНК мамонта M. primigenius, найденного в 1986 г. в вечной мерзлоте в долине реки Энмынвеем (Западная Чукотка): а – свечение ядер мышечных клеток мамонта M. primigenius (возраст около 33 000 лет) при окрашивании флуоресцентным красителем DAPI, свидетельствующее о хорошей сохранности ДНК; б – электрофореграмма тотальной геномной ДНК, выделенной из мышечных клеток мамонта (на дорожку 1 нанесено в 10 раз меньшее количество ДНК, чем на дорожку 2), и контрольной тотальной ДНК из свежеполученных образцов крови человека (дорожки 3 и 4). Правая дорожка – маркер (размер фрагментов указан в т.п.н.) [13]
Исследования древней ДНК позволяют проводить эмпирическую проверку эволюционных гипотез и вносят значительный вклад в комплексную реконструкцию истории изменений биоты. Анализ ДНК из археологических образцов останков человека дает возможность получить сведения о генетических особенностях древнего населения различных регионов.
Первые сообщения об исследованиях древней ДНК появились 25 лет назад. Удалось выделить фрагмент ДНК из музейного образца высушенной мускульной ткани квагги – южноафриканского непарнокопытного животного, вымершего в XIX в. Выделенный фрагмент ДНК был клонирован в фаговом векторе и секвенирован. Филогенетический анализ показал, что установленная последовательность фрагмента митохондриальной ДНК (мтДНК) близка к таковому одного из видов зебр [1, 2]. Следующим появилось сообщение о выделении, клонировании и секвенировании фрагмента ДНК из египетской мумии возрастом около 2400 лет [3]. За этими работами последовали попытки выделения ДНК из останков животных, растений и микроорганизмов возрастом от сотен до более миллиона лет (см. обзор в [4]). По мере накопления данных стало ясно, что возраст останков, в которых, согласно расчетам на основе кинетики разрушения ДНК, могут сохраняться доступные для анализа матрицы, не превышает 0.1–1.0 млн лет, что степень сохранности ДНК зависит от возраста и характера биологического образца, а также в значительной мере от условий, в которых он находился [5, 6]. Сообщения о выделении ДНК из образцов возрастом более миллиона лет являются, по всей видимости, ошибочными. Фрагменты наиболее древних аутентичных ДНК были выделены из останков, найденных в вечной мерзлоте, – мамонт, бизон и другие животные, хлоропластная ДНК растений, бактериальная ДНК [7–12]. При этом удалось выделить фрагменты размером до 900–1000 пар нуклеотидов (п.н.). Низкая температура и низкая влажность способствуют лучшему сохранению ДНК, что позволяет получать пригодные для молекулярно-генетического анализа препараты ДНК из образцов возрастом в десятки тысяч лет (рис. 1) [13].
При работе с ДНК, изолированной из древних или исторических образцов, необходимо учитывать ряд методических проблем. К ним относятся сверхмалые количества и небольшие размеры фрагментов ДНК, которые удается выделить из древних образцов, а также наличие в ДНК химических модификаций, блокирующих ее репликацию либо приводящих к появлению постмортальных мутаций в последовательности нуклеотидов.
Спонтанные повреждения молекулы ДНК в живой клетке репарируются в процессе репликации или приводят к гибели и элиминации клетки. После гибели целого организма репарация, как и элиминация клеток с поврежденной ДНК, прекращается, что ведет к накоплению хи- мических модификаций в молекуле ДНК и фрагментации молекул ДНК в клетках погибшего организма. Помимо этого ДНК в захороненных останках разрушается организмами почвенной биоты. Из-за деградации древней ДНК контаминация анализируемых образцов даже единичными молекулами современной ДНК ведет к получению ложных результатов.
Появление полимеразной цепной реакции (ПЦР) [14– 16] значительно расширило возможности анализа древней ДНК, т.к. позволяет in vitro быстро получать множество копий из одной исходной молекулы ДНК. Применение ПЦР позволяет избирательно амплифицировать целевые фрагменты, что особенно важно при исследовании древних образцов, в которых до 99 % ДНК может составлять примесная ДНК из почвенных бактерий и грибов.
Развитие технологий экстракции и секвенирования ДНК в последние несколько лет привело к тому, что от извлечения отдельных коротких фрагментов ДНК удалось перейти к определению полной последовательности митохондриального генома, определению участков ядерного генома, к анализу популяционно-генетического разнообразия вымерших видов и популяций (моа, мамонта, шерстистого но- сорога, пещерного медведя, бизонов Берингии, гигантского орла, неандертальца и др.) и исследованию изменений экосистем в плейстоцене и голоцене (см. обзоры [4, 17–20]). За годы исследований был сформулирован ряд требований к условиям работы с древней ДНК и критериев аутентичности получаемых результатов. Контаминация исследуемых образцов современными ДНК остается одной из наиболее важных проблем при анализе древней ДНК.
Среди наиболее известных примеров – сообщение о последовательности ДНК, выделенной из кости динозавра [21], которая, как выяснилось при последующем анализе, являлась фрагментом ядерной ДНК человека [22], а также упомянутая выше попытка секвенирования ДНК из египетской мумии [3] – в настоящее время полученная нуклеотидная последовательность рассматривается как результат загрязнения современной человеческой ДНК [17, 23]. При работе с ДНК, изолированной из древних или исторических образцов, необходимо учитывать также возмож- ность появления ошибок в реконструируемых нуклеотиных последовательностях вследствие гидролитической или окислительной модификации древней ДНК. Напри- мер, определение нуклеотидных последовательноcтей протяженных участков ядерного генома одного и того же образца неандертальца было проведено двумя группами. Группа Эдварда Рубина из Объединенного института геномных исследований при Департаменте энергетики США опубликовала последовательность 65 000 пар нуклеотидов, а группа Свантэ Пэбо из Института эволюционной антропологии Макса Планка в Германии сообщила о секвенировании 1 млн пар нуклеотидов [24, 25]. Однако последующий анализ выявил значительное количество ошибок в результатах второй группы – большая доля последовательностей представляла результат контаминации современными ДНК. Кроме того, проведенное этой группой «однопроходное» секвенирование не позволяет исключить множество ошибок, возникающих вследствие имеющихся в древней ДНК модификаций нуклеотидов, которые можно будет выявить только при условии многократного секвенирования последовательностей [26–28]. Были выявлены ошибки в первой опубликованной последовательности фрагмента мтДНК неандертальца из пещеры Фельдхофер [29]. Из 27 выявленных различий с мтДНК человека 4 оказались артефактами [30]. Не свободны от ошибок и опубликованные нуклеотидные последовательности других видов – плейстоценового пещерного медведя [31] и мамонта [32, 33] и др. Аналогичные проблемы (например, необходимость ана- лиза сверхмалых количеств ДНК, или ДНК, разрушенной химическими или термическими воздействиями) возникают в ряде случаев и в генетической экспертизе криминалистических образцов. Анализ этих проблем и подходы к их разрешению представлены в данном обзоре.

Экстракция ДНК и проблема контаминации

Палеонтологические и археологические материалы и биологические образцы, получаемые при раскопках или хранящиеся в музеях, содержат очень малые количества ДНК, которая обычно сильно фрагментирована. Помимо этого, в древней ДНК присутствуют разного рода модификации, препятствующие амплификации или ведущие к ошибкам чтения нуклеотидной последовательности. Из-за низкой эффективности амплификации аутентичной ДНК, выделенной из древних и исторических образцов, загрязнение образца даже единичными молекулами современной ДНК приводит к получению ложных результатов. Вследствие этого, для того чтобы предотвратить амплификацию матриц, не имеющих отношения к исследуемому образцу, необходимо принимать ряд специальных мер, направленных на предотвращение контаминации и выявление результатов возможной контаминации. Ложнопозитивные результаты, обусловленные внутрилабораторной контаминаци- ей, составляют одну из основных проблем исследования древней ДНК. Поэтому ключевым этапом молекулярно- генетического анализа древних и исторических образцов является экстракция ДНК.
Экстракция ДНК из древних образцов должна проводиться с учетом возраста и состояния образца. В частности, от этого зависит выбор детергента, используемого для лизиса клеток. Додецилсульфат натрия (SDS), применяемый в стандартных процедурах выделения ДНК для разрушения липидов, предпочтительно заменять неионными детергентами для мягкого лизиса (Triton или T win), либо проводить выделение без детергентов, т.к. в палеообразцах липиды уже разрушены, и SDS снижает выход ДНК. Однако при работе с образцами относительно небольшого возраста применение детергентов оправдано. При обработке костного материала реагентами, содержащими ЭДТА, происходит вымывание кальция из образца и изменение pH раствора, что может повлиять на эффективность связывания ДНК на колонках, применяемых на следующих этапах очистки.
Работа с древней ДНК должна проводиться в специально оборудованных помещениях, в которых принимаются все возможные меры для защиты от контаминации современными ДНК. К ним относятся помещения с измененным давлением воздуха: высоким – там, где идет работа с древними ДНК, и низким – там, где идет работа с современными ДНК или амплифицированными продуктами. Эти помещения должны регулярно дезинфицироваться химическими реагентами и ультрафиолетовым излучением, чтобы избавиться от возможного присутствия в них ДНК (исследуемой, амплифицированной или посторонней) и клеток, ее содержащих (аэрозоли и пыль с микроорганизмами и клетками человека и других организмов). Работа с древней ДНК должна проводиться в защитных костюмах, перчатках и масках. Как минимум, обработка древних образцов и процессы экстракции ДНК, при которых исследователь имеет дело с единичными фрагментированными молекулами, должны осуществляться в помещениях, изолированных от тех, в которых проводится ПЦР-амплификация и последующая работа с амплифицированной ДНК, представленной миллионами молекул. В помещениях для работы с древней ДНК не должны проводиться другие работы с амплифицированными фрагментами, т.к. предотвратить их распространение по лаборатории крайне сложно. Работать с ДНК ныне живущих организмов необходимо в отдельном здании или хотя бы в помещении с отдельной вентиляцией. Все эти меры способствуют предотвращению лабораторной контаминации, однако не сказываются на загрязнении образца, возникшем до его поступления в лабораторию. Для снижения вероятности загрязнения поверхностный слой образца обычно удаляется.
Контаминация представляет особенно значимую проблему при исследовании древних образцов человека или микроорганизмов, т.к. и человеческая ДНК, и бактериальная всегда присутствуют в лаборатории, и последовательности примесной ДНК в этих случаях труднее отличить от аутентичных последовательностей, чем при исследовании экзотических или редких видов. Правила работы с древней ДНК и критерии соответствия амплифицированных фрагментов исследуемому образцу древней ДНК (аутентичность) обобщены в ряде обзоров [4, 17, 34–36] и представлены в табл. 1.
Экстракция ДНК и проблема контаминации

Таблица 1. Критерии аутентичности древней ДНК
Критерии
Значение для аутентичности
Для работы с древней ДНК используют только те реагенты и пластик, которые проверены на возможное присутствие амплифицируемых матриц. Так как матрицы могут содержаться в них в следовых количествах и давать амплификацию лишь в одной из нескольких проб, необходимо проводить множественные проверки.
Предотвращение контаминации через реагенты и расходные материалы.
Параллельно с экстракцией ДНК из образца все манипуляции проводятся с теми же растворами, в которые не внесены матрицы. При ПЦР используется двойной негативный контроль – обычный (реакционная смесь без матрицы) и с добавлением «пустого» экстракта.
Выявление контаминации, которая могла произойти во время экстракции или во время приготовления смеси для ПЦР.
Позитивный контроль обычно не применяется, т.к. он может представлять опасность контаминации.
Предотвращение контаминации.
По возможности осуществляется несколько независимых экстракций ДНК из разных частей образца.
Выявление внутренней контаминации образца.
Повторные амплификации материала, полученного в одной и той же или в разных экстракциях.
Выявление спорадической контаминации и выявление ошибочно включенных нуклеотидов при амплификации деградированной ДНК в экстрактах, содержащих малое число матричных молекул.
Клонирование продуктов амплификации и/или секвенирование
множественных клонов.
Выявление гетерогенности в амплифицированных продуктах, возникшей в результате контаминации или при амплификации деградированной ДНК с модифицированными нуклеотидами.
Определение числа амплифицируемых матричных молекул ДНК (должно проводиться для каждой используемой пары праймеров, т.к. число амплифицируемых молекул сильно варьирует в зависимости от длины и нуклеотидного состава амплифицируемого фрагмента и чувствительности специфичных пар праймеров).
Оценка возможности включения нуклеотидов, не соответствующих исходной последовательности. Для экстрактов, содержащих единичные молекулы, вероятность ошибочного включения велика и необходимо проведение нескольких амплификаций. Для экстрактов, содержащих более 1000 молекул, достаточно одной амплификации.
Особое «молекулярное поведение» - обратная корреляция между эффективностью амплификации и длиной амплифицируемого фрагмента.
Если в образце не наблюдается более интенсивная амплификация коротких фрагментов, чем длинных по сравнению с амплификацией современной ДНК, то это является указанием, что источником амплифицированной ДНК явилась контаминация современными матрицами.
Биохимический анализ сохранности макромолекул.
Хорошая биохимическая сохранность макромолекул указывает на высокую вероятность присутствия доступной для анализа ДНК и может поддержать аутентичность результатов секвенирования.
Исключение ядерных вставок мтДНК.
В ядерной ДНК присутствуют гомологи мтДНК, что необходимо учитывать при амплификации мтДНК.
Независимое воспроизведение результатов в другой лаборатории.
Позволяет определить лабораторную контаминацию образцов или реагентов, но не исключает контаминации, присущей самим образцам (загрязнений, присутствовавших в образце до его поступления в лабораторию, например внесенных во время археологических раскопок). Ранее такое требование считалось обязательным, сейчас это ограничение снято.
http://antropogenez.ru/article/81/


Выявление контаминации

Возможная контаминация в исследованиях древней ДНК может быть выявлена с большей надежностью, когда при анализе априорно предполагается, что экстракт будет контаминирован, и результаты каждого этапа рассматриваются с точки зрения такой возможной. Для выявления лабораторной контаминации используются т.н. «пустые» экстракции – образцы, которые подвергают таким же процедурам, что и обрабатываемый образец, однако не добавляют материал образца или ДНК. Так как посторонние матрицы могут быть представлены в очень низких концентрациях, проявляясь не в каждой реакции, ставят множественные контроли в отношении 1:5, но не менее чем 1:1 с экстрагируемым образцом. Такие «пустые» экстракты используют далее на всех этапах анализа в дополнение к обычным негативным контролям.
Независимое воспроизведение результатов другой лабораторией считается одним из наиболее сильных аргументов, подтверждающим аутентичность результатов. Однако и оно не является абсолютной гарантией [36].
Особое внимание следует уделять биоинформационному анализу полученных нуклеотидных последовательностей. Так как наиболее часто при исследовании древ- них образцов проводится анализ митохондриальной ДНК (мтДНК), необходимо проводить сравнение полученных последовательностей не только с мтДНК видов, близких к исследуемому, или с мтДНК человека (как возможного источника контаминации), но также и с ядерными гомологами мтДНК (nuclear mtDNAs, numts), уровень сходства которых с мтДНК у человека достигает 98 % (например, для последовательности NT _004350.18, расположенной на хромосоме 1).

Химические модификации древней ДНК и постмортальные мутации

Рис. 2. Пример продуктов ЦПР-амплификации фрагментов митохондриального генома мамонта: а – продукты ЦПР-амплификации коротких фрагментов (300–600 п.н.); б – ПЦР-амплификация длинных фрагментов, содержащих полные митохондриальные гены (1317 п.н. для гена CytB и 1613 п.н. для гена ATP6), ПЦР-фрагменты большего размера (3054 п.н. для гена ND5) получить не удалось. М – маркер, размер указан в т.п.н. К – негативные контроли [13]
Рис. 2. Пример продуктов ЦПР-амплификации фрагментов митохондриального генома мамонта: а – продукты ЦПР-амплификации коротких фрагментов (300–600 п.н.); б – ПЦР-амплификация длинных фрагментов, содержащих полные митохондриальные гены (1317 п.н. для гена CytB и 1613 п.н. для гена ATP6), ПЦР-фрагменты большего размера (3054 п.н. для гена ND5) получить не удалось. М – маркер, размер указан в т.п.н. К – негативные контроли [13]
Постмортальные изменения ДНК и мутации, происходящие при ее амплификации in vitro, являются одной из центральных методологических проблем, присущих исследованиям древней ДНК, как и ДНК из образцов, сложных для криминалистической экспертизы. В отличие от метаболически активных тканей, в которых функционируют системы репарации ДНК, в мертвых или спящих клетках накапливаются химические (гидролитические или оксидативные) модификации и разрушения нитей ДНК. Как показывают исследо- вания, постмортальные разрушения ДНК характеризуются разрывами нитей, утратой оснований, а также сшивками между нитями, препятствующими ПЦР. Особенно важными постмортальными изменениями являются химические модификации оснований, не препятствующие амплификации, но приводящие к включению во вновь синтезированную нить нуклеотидов, не соответствующих исходно при- сутствовавшим в немодифицированной нити ДНК (замены типа I A → G / T → C и замены типа II C → T / G → A) (табл. 2).
Характер разрушения деградированных матриц ДНК зависит от возраста образцов, их географической локализации и тафономических условий (условий захоронения останков) той среды, из которых останки были извлечены. Постмортальные изменения могут возникать в «горячих точках» мутирования, имитируя тем самым эволюционный процесс [37]. Характер и динамика накопления постмортальных разрушений в ДНК продолжают исследоваться [38, 39]. Вследствие разрушения ДНК размер большинства фрагментов в древних образцах не превышает 100–500 п.н. Поэтому при проведении ПЦР на древней ДНК подбираются праймеры для амплификации фрагментов не более 200–300 п.н., хотя в отдельных случаях могут быть получены фрагменты и большей длины (рис. 2).

Таблица 2. Различные типы разрушений в древней ДНК (по [4, 17] с изменениями)
Тип разрушения
Причина разрушения
Влияние на ДНК
Возможное решение
Разрушение азотистых оснований
и дезоксирибозы
Постмортальное разрушение
внутриклеточными нуклеазами, деградация микроорганизмами и др. химические процессы
Апуринизация ДНК, разрыв
нитей, уменьшение размера фрагментов ДНК, снижение общего количества ДНК
Амплификация коротких (100–200 п.н.) перекрывающихся фрагментов
Сшивки, блокирую-
щие ПЦР
Алкилирование, реакция Майяра (реакция конденсации между сахаром и аминогруппой азотистого основания или аминокислоты)
Перекрестные сшивки между нитями ДНК в одной молекуле; перекрестные сшивки между нитями ДНК в разных молекулах или сшивки ДНК с белками
Обработка реагентами, разрушающими сшивки
Дезаминирование и другие формы окислительной
Или гидролитической модификации
оснований
Аденин –> гипоксантин
Гуанин –> ксантин
Цитозин –> урацил
5-метилцитозин –> тимин
Включение при амплификации
нуклеотидов, не соответствующих тем, которые присутствовали в данной позиции
в исходной  немодифицированной матрице
Обработка ДНК урацил-N-гликозилазой, удаляющей продукты дезаминирования цитозина.
Определение консенсусной последовательности нуклеотидов на основе многократного
секвенирования анализируемых участков:
проведение множественных независимых ПЦР, клонирование исходной матрицы или продуктов ПЦР и секвенирование
нескольких клонов

Рис. 3. Распределение размера секвенированных фрагментов при секвенировании на платформе 454. Неопубликованные данные, получены в сотрудничестве E.И. Рогаева с M. Blow и E. Rubin
Рис. 3. Распределение размера секвенированных фрагментов при секвенировании на платформе 454. Неопубликованные данные, получены в сотрудничестве E.И. Рогаева с M. Blow и E. Rubin
Большинство исследований древней ДНК проведено на мтДНК, которая содержится в клетке в количестве сотен и тысяч копий, и с вероятностью большей, чем ядерная ДНК, может быть успешно амплифицирована. Исследований ядерной ДНК намного меньше. Для оценки сохранности ядерной ДНК из образца мамонта M. Primigenius, найденного в вечной мерзлоте на Чукотке, были проведены амплификация, клонирование и секвенирование ядерной ДНК (Е.И. Рогаев, Э. Рубин, неопубликованные данные). Большая часть последовательностей генома была представлена фрагментами по 50–100 нуклеотидов (рис. 3). Это свидетельствует об относительно хорошей сохранности ядерной ДНК.
Постмортальные модификации случайным образом распределены в сохранившихся фрагментах ДНК. Так, в исследовании [13] при клонировании ПЦР-амплификатов мтДНК мамонта и последующем секвенировании были обнаружены однонуклеотидные замены в отдельных фрагментах со средней частотой 6 на 1000 нуклеотидов. Это обстоятельство было учтено для точной реконструкции полной последовательности митохондриального генома чукотского мамонта M. primigenius (рис. 4) как консенсуса многократно перекрывающихся фрагментов [13]. Для дополнительного контроля постмортальных мутаций во всех генах мтДНК мамонта были определены общее число замен по сравнению с мтДНК слона E. maximus и отношение несинонимичных (ведущих к замене аминокислоты) к синонимичным заменам. При этом число замен в генах мтДНК чукотского мамонта [13] оказалось меньше, чем в генах одновременно опубликованной немецкими коллегами последовательности мтДНК мамонта, найденного в Якутии [40]. Сравнительный анализ показал, что это различие обуcловлено необычайно большим количеством замен на участке в 200–300 нуклеотидов в мтДНК якутского мамонта, в области генов ND1 и ND2, при этом число неси- нонимических замен превышало число синонимических – 2:1 для гена ND1 и 7:2 для гена ND2. В гене ND2 чукотского мамонта была выявлена лишь одна синонимическая замена, а в гене ND1 отличий от гена слона найдено не было [13]. Недетектированные постмортальные мутации сказываются на результатах филогенетической реконструкции.

Новые технологии секвенирования ДНК

При исследованиях древней ДНК приходится секвенировать большое количество коротких фрагментов, многократно перекрывающих одни и те же участки генома. Низкая скорость и высокая стоимость секвенирования ограничивала возможности таких исследований. В последние 3–4 года стали доступны новые технологии массивного параллельного секвенирования ДНК, что снизило стоимость секвенирования ДНК на два порядка. Новые технологии позволяют исследователю иметь в своем распоряжении секвенирующие мощности, доступные ранее лишь крупным геномным центрам. Среди новых стратегий секвенирования применение в области исследований древней ДНК нашли технологии клональной амплификации с последующим параллельным секвенированием плотных микропанелей клонированных фрагментов ДНК в повторяющихся циклах энзиматических реакций с компьютерной регистрацией результирующих сигналов для каждого отдельного фрагмента в каждом цикле. Упорядоченное расположение в пространстве ПЦР- ампликонов на плоской подложке или их иммобилизация на бусинах микронного размера, которые помещаются в упорядоченные ячейки, позволяет минимизировать объем реакционной смеси, что значительно удешевляет процесс.
Реализация этих стратегий включает несколько этапов, на каждом из которых найдены свои технические решения. Так, при подготовке библиотек фрагментов ДНК с помощью ПЦР количественное соотношение продуктов амплификации не пропорционально количественному соотношению исходных матриц – некоторые фрагменты ДНК амплифицируются более эффективно, тогда как другие малоактивны при амплификации и в результате теряются. Преодолеть эту проблему позволяет эмульсионная ПЦР. Раствор ДНК вводят в смесь минеральных масел с таким расчетом, чтобы каждая молекула оказалась в собственном пузырьке, в котором, как в микрореакторе, проходит ее амплификация. Этот подход позволяет минимизировать потери отдельных исходных матриц. Существуют различные технические решения как для под- готовки библиотек фрагментов, так и для других этапов процесса – энзиматических реакций, визуализации и компьютерной регистрации сигнала, хранения и обработки данных [41].
Новые возможности технологий секвенирования сочетаются с определенными ограничениями. Так, массивное параллельное пиросеквенирование, реализуемое платформой 454 Life Science system (Genome Sequence 20tm DNA sequencing System: GS20, Roche/454 Life Science), позволяет в 100 раз быстрее проводить секвенирование, чем стандартный метод с использованием капиллярного электрофореза – за один раз анализируется до 25 млн нуклеотидов. Однако при этом читается последовательность небольшой длины (обычно менее 250–400 п.н.). Собственно, в применении к древней ДНК это не является ограничением, т.к. анализировать приходится множество фрагментов как раз такого размера.
Технология Illumina, ранее называвшаяся Solexa (по названию разработавшей ее компании), и SOLid (компания ABI) позволяют анализировать до 1 млрд нуклеотидов за один проход, но читаются лишь последовательности длиной 30–40 нуклеотидов (год назад было всего 25). Наличие полных последовательностей геномов человека и основных модельных организмов, используемых как референтные последовательности, позволяет картировать короткие прочтенные фрагменты и собирать их в единую последовательность.
Еще одним ограничением применения новых платформ является 10-кратное снижение точности секвенирования по сравнению с методами, основанными на принципе Сэнгера. Однако эти технологии весьма перспективны, и можно ожидать, что они будут усовершенствованы в ближайшем будущем.
« 1 2