Сверим часы
Как научиться определять время, сравнивая молекулы? В настоящее время развитие молекулярной биологии, биоинформатики и геномики позволяет находить новые подходы к изучению центрального вопроса всей биологической науки — проблемы эволюции живых систем. Одним из весомых вкладов этих относительно молодых дисциплин в развитие данной области является метод оценки времени эволюционного расхождения таксонов — так называемый метод «молекулярных часов».
| ||||
Развитие молекулярной систематикиИдея использовать биомолекулы для определения степени родства между видами, как и многие другие важные идеи в биохимии прошлого века, пришла в голову Лайнусу Полингу (Linus Pauling [1]). Предложенная им и его коллегой Эмилем Цукеркандлем (Emil Zuckerkandl) в 1965 году концепция была достаточно проста и основывалась примерно на тех же принципах, на которых основана систематика морфологическая. Ученые рассудили, что чем больше сходство между биомолекулами, синтезируемыми организмами, тем более филогенетически близки сами организмы, и наоборот. В первых экспериментах, посвященных изучению данного вопроса, Полинг и его коллеги исследовали некоторые биохимические характеристики (такие, например, как молекулярная масса и электрофоретическая подвижность) гемоглобина, выделенного из крови представителей разных таксонов. В результате оказалось, что гемоглобины человека и гориллы отличаются заметно меньше, чем они вместе отличаются от гемоглобинов лошади. Еще дальше от этой группы стояли гемоглобины курицы, ну а самые сильные отличия наблюдались в белках, выделенных из крови рыбы [2]. Несложно заметить, что выводы зарождающейся молекулярной систематики в этом случае полностью совпали с устоявшимися представлениями морфологов. Разумеется, подобный результат вполне удовлетворил исследователей.Собственно, время расхождения таксонов при таком подходе определяется исходя из двух параметров: примерной скорости накопления изменений в неких биомолекулах и непосредственного количества этих изменений (различий между биомолекулами таксонов, время расхождения которых пытается определить исследователь). Чем раньше виды разошлись, тем больше отличий в последовательностях биополимеров они накопили. Зная количество различий и скорость их появления можно рассчитать время, за которое они образовались. Однако это только теория, а на практике оба этих показателя довольно трудно поддаются точной оценке.
Однако, несмотря ни на что, методика молекулярных часов находила широкое применение на ранних этапах молекулярно-филогенетических исследований. В частности, ее использовали для оценки времени расхождения крупных таксонов. Например, Дикерсон [4] изучал эволюционные изменения гемоглобина и определил, что растения, животные и грибы дивергировали порядка Несколько отличный подход к определению степени родства видов молекулярными методами применили Бриттен и Кон в 1968 году [7]. Суть их метода заключалась в сравнении сразу всей ДНК исследуемых видов. Это делалось таким образом: сначала молекулы геномной ДНК подвергались денатурации, после чего одноцепочечные молекулы отжигались друг с другом. Далее исследовался полученный гетеродуплекс. Логика была такова: чем больше энергии придется затратить для того, чтобы осуществить денатурацию полученного дуплекса (чем дуплекс более прочен), тем ближе виды между собой, поскольку очевидно, что стабильность такой гибридной ДНК напрямую зависит от того, насколько похожи две частично комплементарные цепи. Результаты этих исследований не были очень впечатляющими, поскольку тогда еще не было четкого понимания того, что геном состоит далеко не только из уникальной ДНК. Картину портили всевозможные геномные повторы, количество и размер которых, как оказалось, плохо коррелирует со степенью различия между видами (кстати, данная работа сделала серьезный вклад в их изучение) [8]. Возникновение и исчезновение повторов — это непредсказуемый процесс, который может быть вызван огромным числом самых разных причин. К тому же, предполагать, что число повторов изменяется с постоянной скоростью у всех видов в любой исторический момент, довольно наивно. ДНК: какие куски лучше сравнивать?Как уже говорилось, одним из самых тонких мест в методике молекулярных часов является определение скорости накопления изменений, которую довольно проблематично точно оценить. К тому же, в большинстве случаев эта скорость для удобства считается постоянной на всем времени с момента расхождения изучаемых видов, а говорить об этом не всегда правомерно. Классическим эволюционистам идея постоянства скорости накопления мутаций была непонятна совершенно. Ведь согласно общепризнанной в то время синтетической теории эволюции, скорость эволюционного изменения видов определяется факторами среды и интенсивностью естественного отбора, а, следовательно, она просто обязана колебаться, поскольку условия среды меняются с переменной скоростью.Первые идеи по разрешению сложившегося противоречия были предложены японским биологом Моту Кимура (Motoo Kimura), который сформулировал так называемую «нейтральную теорию» молекулярной эволюции [9]. Предположение заключалось в том, что большинство изменений в последовательности геномной ДНК никак не отражается на фенотипе особей, а, следовательно, не попадает под действие естественного отбора. Интересно, что по этой причине, концепцию Кимуры некоторое время считали противоречащей классическому дарвинизму. Однако сейчас очевидно, что никакого противоречия нет. Дело в том, что отбор преимущественно действует на уровне строения белковых молекул. Ведь для того, чтобы организм нормально существовал, его белки должны правильно работать, а это невозможно в случае, если белковые молекулы накопят слишком много структурных изменений. Следовательно, организмы, синтезирующие дефектные белки, погибают, а выживают только те, чьи белковые молекулы нормально функционируют и не содержат критического количества перестроек. Но, как оказывается, отсутствие различий в белковых молекулах видов вовсе не говорит о том, что этих различий нет в последовательностях ДНК. Генетический аппарат клетки устроен таким образом, что непосредственно на структуру белков (а, следовательно, на фенотипические проявления признаков, подвергающиеся действию отбора) влияют далеко не все последовательности ДНК. Сейчас хорошо известно, что в среднем у эукариотических организмов количество структурных генов может колебаться от 10% до 40% от всего генома. Остальные последовательности представлены межгенными спейсерами, регуляторными участками, мобильными элементами и гетерохроматиновыми повторами, мутации в которых далеко не всегда отражаются на фенотипе особи и в массе своей оказываются именно нейтральными. Разумеется, эти представления появились не сразу. Молекулярные часы: множество стрелок и все идут с разной скоростью!Примерно в это же время ученые с короткими фамилиями Ву и Ли сделали предположение о том, что в линиях грызунов и человекообразных обезьян могут Однако эти заключения были подвергнуты сомнению в работе Эстила [12], в которой утверждалось, что причиной расхождений в скоростях накопления мутаций была неверная оценка времени дивергенции общих предков линии грызунов и человекоподобных обезьян. Впрочем, в последующих работах Ли было показано, что есть разница в скорости накопления замен в интронах некоторых генов у обезьян Старого света и их человекоподобных родственников [13]. Сравнение скоростей молекулярной эволюции различных локусов проводилось и на других объектах. В частности, было показано, что ген алкогольдегидрогеназы у гавайских представителей рода Drosophila изменялся заметно быстрее в сравнении с таким же геном у D. Pseudoobscura [14]. Или, например, известно, что структурные гены митохондрий Все эти результаты свидетельствуют о том, что в разработке метода молекулярных часов есть еще множество неразрешенных вопросов. И по сей день не ясно, чем вызывается разница в скорости накопления мутации и каков вклад в этот процесс систем репарации ДНК и внешних воздействий со стороны среды обитания. Также не всегда понятно, какие именно участки ДНК лучше применять в тех или иных исследованиях. Ясно только то, что эта методика может стать очень удобной и действенной по мере накопления большего количества данных о составе последовательностей ДНК разных видов. Литература
|
Темы
Австролоиды
Альпийский тип
Америнды
Англия
Антропологическая реконструкция
Антропоэстетика
Арабы
Арменоиды
Армия Руси
Археология
Аудио
Аутосомы
Африканцы
Бактерии
Балканы
Венгрия
Вера
Видео
Вирусы
Вьетнам
Гаплогруппы
генетика
Генетика человека
Генетические классификации
Геногеография
Германцы
Гормоны
Графики
Греция
Группы крови
Деградация
Демография в России
Дерматоглифика
Динарская раса
ДНК
Дравиды
Древние цивилизации
Европа
Европейская антропология
Европейский генофонд
ЖЗЛ
Живопись
Животные
Звёзды кино
Здоровье
Знаменитости
Зодчество
Иберия
Индия
Индоарийцы
интеллект
Интеръер
Иран
Ирландия
Испания
Исскуство
История
Италия
Кавказ
Канада
Карты
Кельты
Китай
Корея
Криминал
Культура Руси
Латинская Америка
Летописание
Лингвистика
Миграция
Мимикрия
Мифология
Модели
Монголоидная раса
Монголы
Мт-ДНК
Музыка для души
Мутация
Народные обычаи и традиции
Народонаселение
Народы России
научные открытия
Наши Города
неандерталeц
Негроидная раса
Немцы
Нордиды
Одежда на Руси
Ориентальная раса
Основы Антропологии
Основы ДНК-генеалогии и популяционной генетики
Остбалты
Переднеазиатская раса
Пигментация
Политика
Польша
Понтиды
Прибалтика
Природа
Происхождение человека
Психология
Разное
РАСОЛОГИЯ
РНК
Русская Антропология
Русская антропоэстетика
Русская генетика
Русские поэты и писатели
Русский генофонд
Русь
Семиты
Скандинавы
Скифы и Сарматы
Славяне
Славянская генетика
Среднеазиаты
Средниземноморская раса
Схемы
США
Тохары
Тураниды
Туризм
Тюрки
Тюрская антропогенетика
Укрология
Уралоидный тип
Филиппины
Фильм
Финляндия
Фото
Франция
Храмы
Хромосомы
Художники России
Цыгане
Чехия
Чухонцы
Шотландия
Эстетика
Этнография
Этнопсихология
Юмор
Япония
C
Cеквенирование
E
E1b1b
G
I
I1
I2
J
J1
J2
N
N1c
Q
R1a
R1b
Y-ДНК
Поиск по этому блогу
пятница, 13 декабря 2013 г.
Сверим часы
Ярлыки:
генетика,
Генетика человека,
ДНК,
РНК