Белки против РНК — кто первым придумал сплайсинг?
Белковым сплайсингом называется процесс, в результате которого внутренняя часть белка (интеин) пост-трансляционно вырезается, а фланкирующие ее последовательности (экстеины) лигируются. От обычного процессинга белковый сплайсинг отличается тем что он «самодостаточен» — не требует присутствия каких-либо кофакторов или ферментов. А необычное и сложное поведение самого интеина поражает и дает в руки биологов точный инструмент для исследований молекулярного мира белков.
| |||||||
Оглавление
Введение
В настоящее время кардинально меняются многие взгляды на основы жизни. Молекулярная биология — не исключение. Например, еще лет
Сплайсинг (от англ. to splice — сшивать, соединять) — это процесс дозревания молекул, в результате которого из предшественника удаляется внутренняя часть с последующимлигированием (т. е. образованием ковалентной связи) фланкирующих последовательностей (т. е. тех частей молекулы, что примыкали к концам удалённой внутренней части).
Сплайсинг нуклеиновых кислот является одним из мощнейших способов быстрой перетасовки наследственной информации, что в некоторых случаях помогает живым организмам быстро приспособиться к изменившимся условиям. Поэтому его обнаружение у белков еще раз подтвердило универсальный для всего живого принцип «разумной бережливости» — удачные процессы, характерные для одних типов молекул, часто обнаруживаются и у других (в данном случае — и у нуклеиновых кислот, и у белков).
Впервые белковый сплайсинг был открыт при исследовании дрожжевого гена VMA1, кодирующего субъединицу Vma1 вакуолярной ATФазы [1, 2]. Оказалось, что в результате дозревания центральная часть белка удаляется, а фланкирующие ее последовательности лигируются («сшиваются» между собой). При этом для концевых последовательностей дрожжевого генаVMA1 характерна высокая степень гомологии с аналогичными последовательностями других микроорганизмов, тогда как в центральной части она нарушалась. Так стало ясно, что и у белков в некоторых случаях может происходить процесс, аналогичный сплайсингу пре-мРНК. Также как и в автосплайсинге РНК, для сплайсинга белков не требуются ни ферменты, ни кофакторы. По аналогии центральную часть белка (которая самовырезается) назвали интеином (от internal protein), фланкирующие последовательности —
Структура интеинов
Условно интеины можно поделить на две большие группы — классические интеины и мини-интеины. Классический интеин состоит из двух доменов — сплайсингового домена, который как раз и катализирует вырезание интеина из белка-хозяина и последующее его сшивание (так сказать, «заметает следы»), и центрального эндонуклеазного домена (который может разрезать ДНК по определенным сайтам), обеспечивающего так называемый «хоуминг» интеина. Хоуминг — настолько интересный процесс, что подробнее мы его рассмотрим ниже. В двух словах скажем только, что он (хоуминг) отвечает за распространение гена интеина (что даже больше похоже на размножение, если б этот термин можно было применить к отдельному белку). Мини-интеины не имеют центрального эндонуклеазного домена и хоумингом не занимаются.
Эндонуклеазный и сплайсинговый регионы образуют в молекуле интеина два пространственно разделенных домена. Сплайсинговый домен образуется
Современные представления о механизме белкового сплайсинга
Многими исследователями было показано, что белковый сплайсинг является аутокаталитическим процессом и для своего осуществления не требует присутствия ферментов или кофакторов [4]. Однако определить точный механизм сплайсинга белков долгое время не удавалось — процесс происходит очень быстро, и обычными методами обнаружить промежуточные соединения не представлялось возможным. Главная проблема заключалась в том, что интеин в составе белка нельзя было даже выделить — сплайсинг проходил сразу после синтеза белка, и пока клетки собирались и лизировались — следов уже не оставалось. Решить эту задачу удалось группе Ф. Перлер (Francine Perler) довольно очевидным (как это теперь представляется) способом. Они изменяли ряд консервативных аминокислотных остатков в интеинах методом направленного мутагенеза. Как только мутации касались активного центра интеина — белковый сплайсинг блокировался на разных этапах, и в среде накапливались промежуточные продукты реакции. Например, изменение
Согласно принятой на сегодня теории, белковый сплайсинг состоит из серии последовательных перестановок. Детальное описание (с точки зрения химии) в этом обзоре мы давать не будем, поскольку оно достаточно сложное (его можно увидеть в работе [6]). Но самое удивительное, что помимо цис-сплайсинга (т. е. автокаталитического удаления интеина из белка-предшественника), у многих организмов обнаружено явление транс-сплайсинга. На пальцах это можно объяснить так: у двух белков на соответствующих концах есть по половинке интеина (назовем ихинтеин-подобные домены, ИПД), которые, соединяясь по типу «ключ-замок», образуют вполне функциональный интеин. А этот образованный интеин вырезает сам себя, сшивая два белка в единое целое. То есть, в результате транс-сплайсинга происходит сшивание двух белков, кодируемых двумя различными генами (рис. 4). И это не лабораторная экзотика: по такому механизму, например, происходит образование белка DnaE (одна из субъединиц ДНК-полимеразы) у Synechocystis sp. [7].
Эндонуклеазная активность интеинов
Следующей удивительной особенностью интеинов (правда, не всех) является их эндонуклеазная активность. Интеин обеспечивает (с определенными ограничениями) распространение своего гена в геноме клетки. Такой процесс, как мы уже говорили, и называется хоумингом интеинов. Другими словами, интеин-белок может амплифицировать (множить) количество своих генов в клетке. Также за счет этого свойства он может обеспечивать передачу интеинового гена другим особям данного вида или передавать другим видам (т. н. горизонтальный и вертикальный перенос соответственно). Причем эволюционный анализ распространения разных интеинов (а их открыто больше 1000, причем и у прокариот, и у низших эукариот) свидетельствует, что интеины распространяются довольно активно, и притом, оказавшись в разных видах, могут мутировать и менять последовательность. В общем, интеины в данном случае ведут себя подобно транспозонам или даже примитивным вирусам (если такое в принципе можно сказать про белки). Хотя... ряд вирусов также несет в себе интеины. Например открытый недавно гигантский Мими-вирус имеет интеин (APMV Pol) в гене ДНК-полимеразы. Но об этом давайте поговорим в другой раз.
Механизм хоуминга схематически показан на рис. 5 [6]. На самом деле, хоуминг — это не такая уж экзотика. Хоуминг-эндонуклеазы были известны еще до открытия интеинов. Это большой класс сайт-специфических ДНКаз, которые часто кодируются мобильными генетическими элементами.
Хоуминг интересен в первую очередь тем, что обеспечивает так называемый «горизонтальный» перенос гена — т. е. перенос последовательности в гомологичные области других видов. Осуществляется это, вероятнее всего, вирусами. Действительно, интеины чаще всего встречаются в белках, вовлечённых в метаболизм нуклеиновых кислот (полимеразы, лигазы, гиразы, хеликазы, белки репарации ДНК и т. п.). А ведь это те белки, которые присутствуют у вирусов и фагов! В общих чертах механизм горизонтального переноса можно описать так: дополнительные копии ДНК, которые появляются во время формирования новых вирусов, могут узнаваться как мишень для хоуминга. Интеин катализирует перенос своей последовательности в вирусную ДНК. Таким образом ген попадет в вирус, а вирус во время следующей инфекции может внести его в геном другого, близкого вида. Так гены интеинов могут путешествовать по видам. Однако тут стоит отметить, что распространяются они только между одноклеточными организмами — у многоклеточных они пока не найдены. Зато обнаружено несколько семейств ферментов и молекул, активирующихся по механизмам, похожим на белковый сплайсинг [6]. Произошли ли они от предков интеинов или возникли самостоятельно — пока что неизвестно.
Использование интеинов в биотехнологии
На мой взгляд, интеины являются одним из наиболее удачных и перспективных инструментов в биотехнологии белков и протеомных исследованиях. Про возможные способы использования белкового сплайсинга в практических целях можно писать отдельные обзоры (интересующиеся отсылаются на мою страницу или к работам [3, 6, 8]). Тут же мы коротко рассмотрим основные из методов, а также самые экзотические из них — например, создание белков-«колечек» или способ контроля размножения генно-модифицированных растений.
Очистка рекомбинантных белков
После открытия феномена белкового сплайсинга внимание исследователей сразу привлек факт самодостаточности интеина и точности его самовырезания. Т. е., если пришить интеин на уровне гена к интересующему нас белку
Тщательное исследование показало, что это действительно возможно. Сейчас созданы несколько систем на основе разных интеинов, которые несут His-tag, хитин-связывающий домен бактерий (CBD) и другие классические аффинные метки. Ряд из них уже коммерчески доступены (например системы IMPACT, IMPACT-СΝ, TWIN-IMPACT фирмы NEB). Аналогичные системы создаются и у нас [9, 10]. Потенциал таких технологий огромен — в первую очередь потому, что позволяет упростить очистку рекомбинантного белка до одного этапа (против
Использование белкового сплайсинга для создания биосенсоров
После открытия того, что с помощью интеина можно биологически приемлемо сшить два разных белка, начались работы по созданию нового типа биосенсоров. Главной проблемой в этой области является сложность иммобилизации сенсорного белка на поверхности (т. е. покрытие им поверхности сенсора так, чтобы белок не утратил работоспособности). С помощью интеинов можно «сшивать» между собой два разных белка, один из которых может служить молекулярным якорем, связываясь с нужной поверхностью, а второй — самим сенсором. Так, например, с помощью такой технологии удалось сшить мальтоза-связывающий белок (МВР) и Т4 ДНК-лигазу [11]. В результате активность
Циклизация ферментов
Такое трудно даже представить. Однако это осуществлено — белок «скрутили в баранку» без начала, без конца. Для этого был использован феномен транс-сплайсинга, только интеин-подобные
Экспрессия токсичных для клетки продуктов
Часто эукариотические белки, экспрессируемые в клетках прокариот, убивают организм-продуцент. Это явление называется токсичностью.
Заключение
Сказать по правде, об интеинах и белковом сплайсинге я могу писать много и увлеченно. И особенно это относится к возможным функциям интеинов в клетке. О том, что дают интеины клеткам, что с ними происходит после сплайсинга, как часто происходит явление сплайсинга или хоуминга — до сих пор не известно. С одной стороны, это дает широкое поле для фантазии. Но с другой, к сожалению, публиковать непроверенные фантазии для естествоиспытателя — дурной тон. Однако бесспорно одно — явление белкового сплайсинга дает еще бóльшую гибкость и приспособляемость организмам, поскольку позволяет уже пост-трансляционно изменять продукт гена (или генов). Мы видим, что к известным, и без того изощрённым и многогранным, механизмам живой клетки добавляется еще один. И по всей вероятности — далеко не последний.
Список литературы
|
Темы
Австролоиды
Альпийский тип
Америнды
Англия
Антропологическая реконструкция
Антропоэстетика
Арабы
Арменоиды
Армия Руси
Археология
Аудио
Аутосомы
Африканцы
Бактерии
Балканы
Венгрия
Вера
Видео
Вирусы
Вьетнам
Гаплогруппы
генетика
Генетика человека
Генетические классификации
Геногеография
Германцы
Гормоны
Графики
Греция
Группы крови
Деградация
Демография в России
Дерматоглифика
Динарская раса
ДНК
Дравиды
Древние цивилизации
Европа
Европейская антропология
Европейский генофонд
ЖЗЛ
Живопись
Животные
Звёзды кино
Здоровье
Знаменитости
Зодчество
Иберия
Индия
Индоарийцы
интеллект
Интеръер
Иран
Ирландия
Испания
Исскуство
История
Италия
Кавказ
Канада
Карты
Кельты
Китай
Корея
Криминал
Культура Руси
Латинская Америка
Летописание
Лингвистика
Миграция
Мимикрия
Мифология
Модели
Монголоидная раса
Монголы
Мт-ДНК
Музыка для души
Мутация
Народные обычаи и традиции
Народонаселение
Народы России
научные открытия
Наши Города
неандерталeц
Негроидная раса
Немцы
Нордиды
Одежда на Руси
Ориентальная раса
Основы Антропологии
Основы ДНК-генеалогии и популяционной генетики
Остбалты
Переднеазиатская раса
Пигментация
Политика
Польша
Понтиды
Прибалтика
Природа
Происхождение человека
Психология
Разное
РАСОЛОГИЯ
РНК
Русская Антропология
Русская антропоэстетика
Русская генетика
Русские поэты и писатели
Русский генофонд
Русь
Семиты
Скандинавы
Скифы и Сарматы
Славяне
Славянская генетика
Среднеазиаты
Средниземноморская раса
Схемы
США
Тохары
Тураниды
Туризм
Тюрки
Тюрская антропогенетика
Укрология
Уралоидный тип
Филиппины
Фильм
Финляндия
Фото
Франция
Храмы
Хромосомы
Художники России
Цыгане
Чехия
Чухонцы
Шотландия
Эстетика
Этнография
Этнопсихология
Юмор
Япония
C
Cеквенирование
E
E1b1b
G
I
I1
I2
J
J1
J2
N
N1c
Q
R1a
R1b
Y-ДНК