Материал из Википедии — свободной энциклопедии
Хромосо́мы (др.-греч. χρῶμα — цвет и σῶμα — тело) — нуклеопротеидные структуры в ядре эукариотической клетки, в которых сосредоточена бо́льшая часть наследственной информации и которые предназначены для её хранения, реализации и передачи. Хромосомы чётко различимы в световом микроскопе только в период митотического или мейотического деления клетки. Набор всех хромосом клетки, называемыйкариотипом, является видоспецифичным признаком, для которого характерен относительно низкий уровень индивидуальной изменчивости[1].
Хромосома образуется из единственной и чрезвычайно длинной молекулы ДНК, которая содержит линейную группу множества генов. Необходимыми функциональными элементами хромосомы эукариот являются центромера,теломеры и точки начала инициации репликации. Точки начала репликации (сайты инициации) и теломеры, находящиеся на концах хромосом, позволяют молекуле ДНК эффективно реплицироваться, тогда как в центромерах сестринские молекулы ДНК прикрепляются к митотическому веретену деления, что обеспечивает их точное расхождение по дочерним клеткам в митозе[2].
Исходно термин был предложен для обозначения структур, выявляемых в эукариотических клетках, но в последние десятилетия всё чаще говорят обактериальных или вирусных хромосомах. Поэтому, по мнению Д. Е. Корякова иИ. Ф. Жимулёва[3], более широким определением является определение хромосомы как структуры, которая содержит нуклеиновую кислоту и функция которой состоит в хранении, реализации и передаче наследственной информации. Хромосомы эукариот — это ДНК-содержащие структуры в ядре, митохондриях и пластидах. Хромосомы прокариот — это ДНК-содержащие структуры в клетке без ядра. Хромосомы вирусов — это молекула ДНК или РНК в составе капсида.
Содержание
- 1 История открытия хромосом
- 2 Морфология метафазных хромосом
- 2.1 Дифференциальная окраска метафазных хромосом
- 3 Уровни компактизации хромосомной ДНК
- 4 Хромосомные аномалии
- 4.1 Анеуплоидия
- 4.2 Полиплоидия
- 4.3 Хромосомные перестройки
- 5 Необычные типы хромосом
- 5.1 Микрохромосомы
- 5.2 B-хромосомы
- 5.3 Голоцентрические хромосомы
- 6 Гигантские формы хромосом
- 6.1 Политенные хромосомы
- 6.2 Хромосомы типа ламповых щёток
- 7 Бактериальные хромосомы
- 8 Хромосомы человека
- 9 Примечания
- 10 Литература
- 11 См. также
История открытия хромосом
Первые описания хромосом появились в статьях и книгах разных авторов в 70-х годах XIX века, и приоритет открытия хромосом отдают разным людям. Среди них такие имена, как И. Д. Чистяков(1873), А. Шнейдер (1873), Э. Страсбургер (1875), О. Бючли (1876) и другие[4]. Чаще всего годом открытия хромосом называют 1882 год, а их первооткрывателем — немецкого анатома В. Флеминга, который в своей фундаментальной книге «Zellsubstanz, Kern und Zelltheilung» (нем.) собрал и упорядочил сведения о них, дополнив результатами собственных исследований. Термин «хромосома» был предложен немецким гистологом Г. Вальдейером в 1888 году. «Хромосома» в буквальном переводе означает «окрашенное тело», поскольку оснóвные красители хорошо связываются хромосомами[5].
После переоткрытия в 1900 году законов Менделя потребовалось всего один-два года для того, чтобы стало ясно, что хромосомы при мейозе и оплодотворении ведут себя именно так, как это ожидалось от «частиц наследственности». В 1902 году Т. Бовери и в 1902—1903 годах У. Сеттон (Walter Sutton) независимо друг от друга первыми выдвинули гипотезу о генетической роли хромосом[6].
Экспериментальное подтверждение этих идей и окончательное формулирование хромосомной теории было сделано в первой четверти XX века основателями классической генетики, работавшими в США с плодовой мушкой (D.melanogaster): Т. Морганом со своими учениками К. Бриджесом, А. Стёртевантом (A.H.Sturtevant) и Г. Мёллером. На основе своих данных они сформулировали «хромосомную теорию наследственности», согласно которой передача наследственной информации связана с хромосомами, в которых линейно, в определенной последовательности, локализованы гены. Эти выводы были опубликованы в 1915 году в книге «The mechanism of mendelian heredity» (англ.)[7][6].
В 1933 году за открытие роли хромосом в наследственности Т. Морган получил Нобелевскую премию по физиологии и медицине[8].
Морфология метафазных хромосом
В ходеклеточного цикла облик хромосомы меняется. В интерфазе это очень нежные структуры, занимающие в ядре отдельные хромосомные территории, но не заметные как обособленные образования при визуальном наблюдении. В митозе хромосомы преобразуются в плотно упакованные элементы, способные сопротивляться внешним воздействиям, сохранять свою целостность и форму[9][10]. Именно хромосомы на стадии профазы, метафазы или анафазы митоза доступны для наблюдения с помощью светового микроскопа. Митотические хромосомы можно увидеть у любого организма, клетки которого способны делиться митозом, исключение составляют дрожжи S.cerevisiae, чьи хромосомы слишком малы[11]. Обычно митотические хромосомы имеют размеры в несколько микрон. Например, самая большая хромосома человека хромосома 1 имеет длину около 7 — 8 мкм в метафазе и 10 мкм в профазе митоза[12].
На стадии метафазы митоза хромосомы состоят из двух продольных копий, которые называются сестринскими хроматидами и которые образуются при репликации. У метафазных хромосом сестринские хроматиды соединены в районе первичной перетяжки, называемой центромерой. Центромера отвечает за расхождение сестринских хроматид в дочерние клетки при делении. На центромере происходит сборка кинетохора — сложной белковой структуры, определяющей прикрепление хромосомы к микротрубочкам веретена деления — движителям хромосомы в митозе[13]. Центромера делит хромосомы на две части, называемые плечами. У большинства видов короткое плечо хромосомы обозначают буквой p, длинное плечо — буквой q. Длина хромосомы и положение центромеры являются основными морфологическими признаками метафазных хромосом.
В зависимости от расположения центромеры различают три типа строения хромосом:
- акроцентрические хромосомы, у которых центромера находится практически на конце, и второе плечо настолько мало, что его может быть не видно нацитологических препаратах;
- субметацентрические хромосомы с плечами неравной длины;
- метацентрические хромосомы, у которых центромера расположена посередине или почти посередине[14].
Эту классификацию хромосом на основе соотношения длин плеч предложил в 1912 году российский ботаник и цитолог С. Г. Навашин. Помимо вышеуказанных трёх типов С. Г. Навашин выделял ещё и телоцентрические хромосомы, то есть хромосомы только с одним плечом. Однако по современным представлениям истинно телоцентрических хромосом не бывает. Второе плечо, пусть даже очень короткое и невидимое в обычный микроскоп, всегда присутствует[15].
Дополнительным морфологическим признаком некоторых хромосом является так называемая вторичная перетяжка, которая внешне отличается от первичной отсутствием заметного угла между сегментами хромосомы. Вторичные перетяжки бывают различной длины и могут располагаться в различных точках по длине хромосомы. Во вторичных перетяжках находятся, как правило, ядрышковые организаторы, содержащие многократные повторы генов, кодирующих рибосомные РНК. У человека вторичные перетяжки, содержащие рибосомные гены, находятся в коротких плечах акроцентрических хромосом, они отделяют от основного тела хромосомы небольшие хромосомные сегменты, называемые спутниками[16]. Хромосомы, обладающие спутником, принято называть SAT-хромосомами (лат. SAT (Sine Acid Thymonucleinico) — без ДНК).
Дифференциальная окраска метафазных хромосом
При монохромном окрашивании хромосом (ацето-кармином, ацето-орсеином, окрашиванием по Фёльгену или Романовскому-Гимзе) можно идентифицировать число и размеры хромосом; их форму, определяемую прежде всего положением центромер, наличием вторичных перетяжек, спутников. В подавляющем числе случаев для идентификации индивидуальных хромосом в хромосомном наборе этих признаков недостаточно. Кроме того, монохромно окрашенные хромосомы часто очень похожи у представителей разных видов. Дифференциальное окрашивание хромосом, различные методики которого были разработаны в начале 70-х годов XX века, снабдило цитогенетиков мощнейшим инструментом для идентификации как индивидуальных хромосом в целом, так и их частей, облегчив тем самым процедуру анализа генома[17].
Методы дифференциального окрашивания делятся на две основные группы:
- методы селективного окрашивания определённых хромосомных районов, таких как блоки конститутивного гетерохроматина, активные ядрышкобразующие районы, центромерные и теломерные районы;
- методы дифференциального окрашивания эухроматиновых районов хромосом, обеспечивающие выявление в эухроматиновых районах чередующихся сегментов, так называемых бэндов (англ. band — полоса, лента, тесьма), которые окрашиваются с различной интенсивностью[18].
Уровни компактизации хромосомной ДНК
См. также: Сверхспирализация ДНК
Основу хромосомы составляет линейная макромолекула ДНК значительной длины. Например, в молекулах ДНК хромосом человека насчитывается от 50 до 245 миллионов пар азотистых оснований. У эукариот существует высокоорганизованная система укладки молекул ДНК как в интерфазном ядре, так и в митотической хромосоме. Так, суммарная длина ДНК из одной клетки человека составляет величину порядка двух метров, в то время как типичное ядро человека, наблюдаемое только при помощи микроскопа, занимает объём около 110 мкм³, а митотическая хромосома человека в среднем не превышает 5 — 6 мкм. Надо отметить, что у эукариот в пролиферирующих клетках осуществляется постоянное закономерное изменение степени компактизации хромосом. Перед митозом хромосомная ДНК компактизуется в 105 раз по сравнению с линейной длиной ДНК, что необходимо для успешной сегрегации хромосом в дочерние клетки, в то время как в интерфазном ядре для успешного протекания процессов транскрипции и репликации хромосоме необходимо декомпактизоваться[12]. При этом ДНК в ядре никогда не бывает полностью вытянутой и всегда в той или иной степени упакована. Так, расчётное уменьшение размера между хромосомой в интерфазе и хромосомой в митозе составляет всего примерно 2 раза у дрожжей и 4 — 50 раз у человека[19].
Упаковка ДНК в хроматин обеспечивает многократное сокращение линейных размеров ДНК, необходимое для размещения её в ядре. При этом надо оставить доступными определённые последовательности ДНК для регуляторных факторов и ферментов транскрипции. Эти задачи решаются на уровне упаковки ДНК в хроматин, которая происходит в несколько этапов. Наиболее изученными является три первых уровня упаковки: (1) накручивание ДНК на нуклеосомы с образованием нуклеосомной нити диаметром 10 нм, (2) компактизация нуклеосомной нити с образованием так называемой 30-нм фибриллы и (3) сворачивание последней в гигантские (50 — 200 тысяч п. н.) петли, закреплённые на белковой скелетной структуре ядра — ядерном матриксе[20].
Одним из самых последних уровней упаковки в митотическую хромосому некоторые исследователи считают уровень так называемой хромонемы, толщина которой составляет около 0,1 — 0,3 мкм[21]. В результате дальнейшей компактизации диаметр хроматиды достигает ко времени метафазы 700 нм. Значительная толщина хромосомы (диаметр 1400 нм) на стадии метафазы позволяет, наконец, увидеть её в световой микроскоп. Конденсированная хромосома имеет вид буквы X (часто с неравными плечами), поскольку две хроматиды, возникшие в результате репликации, соединены между собой в районе центромеры (подробнее о судьбе хромосом при клеточном делении см. статьи митоз и мейоз).
Хромосомные аномалии
Анеуплоидия
При анеуплоидии происходит изменение числа хромосом в кариотипе, при котором общее число хромосом не кратно гаплоидному хромосомному набору n. В случае утраты одной хромосомы из пары гомологичных хромосом мутантов называютмоносомиками, в случае одной дополнительной хромосомы мутантов с тремя гомологичными хромосомами называют трисомиками, в случае утраты одной пары гомологов — нуллисомиками[22]. Анеуплоидия по аутосомным хромосомам всегда вызывает значительные нарушения развития, являясь основной причиной спонтанных абортов у человека[23]. Одной из самых известных анеуплоидий у человека является трисомия по хромосоме 21, которая приводит к развитию синдрома Дауна[1]. Анеуплоидия характерна для опухолевых клеток, особенно для клеток сóлидных опухолей[24].
Полиплоидия
Изменение числа хромосом, кратное гаплоидному набору хромосом (n), называется полиплоидией. Полиплоидия широко и неравномерно распространена в природе. Известны полиплоидные эукариотические микроорганизмы — грибы и водоросли, часто встречаются полиплоиды среди цветковых, но не среди голосемянных растений. Полиплоидия клеток всего организма у многоклеточных животных редка, хотя у них часто встречается эндополиплоидия некоторых дифференцированных тканей, например, печени у млекопитающих, а также тканей кишечника, слюнных желёз, мальпигиевых сосудов ряда насекомых[25].
Хромосомные перестройки
Хромосомные перестройки (хромосомные аберрации) — это мутации, нарушающие структуру хромосом. Они могут возникнуть в соматических и зародышевых клетках спонтанно или в результате внешних воздействий (ионизирующее излучение, химические мутагены, вирусная инфекция и др.). В результате хромосомной перестройки может быть утрачен или, наоборот, удвоен фрагмент хромосомы (делецияи дупликация, соответственно); участок хромосомы может быть перенесён на другую хромосому (транслокация) или он может изменить свою ориентацию в составе хромосомы на 180° (инверсия). Существуют и другие хромосомные перестройки.
Необычные типы хромосом
Микрохромосомы[править | править вики-текст]
У многих птиц и рептилий хромосомы в кариотипеобразуют две чёткие группы: макрохромосомы и микрохромосомы. У некоторых видов микрохромосомы настолько мелкие и их так много, что невозможно отличить одну от другой[26]. Микрохромосомы являются короткими по длине, но обогащёнными генами хромосомами. Например, кариотип курицы содержит 39 пар хромосом, 6 из которых относятся к макрохромосомам, а 33 — к минихромосомам. Макрохромосомы содержат две трети геномной ДНК, но только 25 % генов, в то время как микрохромосомы содержат оставшуюся треть геномной ДНК и 75 % генов. Таким образом, плотность генов в минихромосомах курицы в шесть раз выше, чем в макрохромосомах[27].
B-хромосомы
B-хромосомы — это добавочные хромосомы, которые имеются в кариотипе только у отдельных особей в популяции. Они часто встречаются у растений, описаны у грибов, насекомых и животных. Некоторые В-хромосомы содержат гены, часто это гены рРНК, однако не ясно, насколько эти гены функциональны. Наличие В-хромосом может влиять на биологические характеристики организмов, особенно у растений, где их наличие ассоциируется с пониженной жизнеспособностью. Предполагается, что В-хромосомы постепенно утрачиваются в соматических клетках в результате нерегулярности ихнаследования[27].
Голоцентрические хромосомы
Голоцентрические хромосомы не имеют первичной перетяжки, они имеют так называемый диффузный кинетохор, поэтому во время митоза микротрубочки веретена деления прикрепляются по всей длине хромосомы. Во время расхождения хроматид к полюсам деления у голоцентрических хромосом они идут к полюсам параллельно друг другу, в то время как у моноцентрической хромосомы кинетохор опережает остальные части хромосомы, что приводит к характерной V-образной форме расходящихся хроматид на стадии анафазы. При фрагментации хромосом, например, в результате воздействия ионизирующего излучения, фрагменты голоцентрических хромосом расходятся к полюсам упорядоченно, а не содержащие центромеры фрагменты моноцентрических хромосом распределяются между дочерними клетками случайным образом и могут быть утрачены[28].
Голоцентрические хромосомы встречаются упротист, растений и животных. Голоцентрическими хромосомами обладает нематода C. elegans[29].
Гигантские формы хромосом
Политенные хромосомы
Политенные хромосомы — это гигантские скопления объединённых хроматид, возникающие в некоторых типах специализированных клеток. Впервые описаны Е.Бальбиани (Edouard-Gerard Balbiani) в 1881-го в клетках слюнных желёз мотыля (Chironomus), однако их цитогенетическая роль была выявлена позднее в 30-х годах XX века Костовым, Т. Пэйнтером, Э. Хайцем и Г. Бауером (Hans Bauer). Политенные хромосомы обнаружены также в клетках слюнных желёз, кишечника,трахей, жирового тела и мальпигиевых сосудов личинок двукрылых.
Хромосомы типа ламповых щёток
Хромосомы типа ламповых щёток — это гигантская форма хромосом, которая возникает в мейотических женских клетках на стадии диплотены профазы I у некоторых животных, в частности, у некоторых земноводных и птиц[30]. Эти хромосомы являются крайне транскрипционно активными и наблюдаются в растущих ооцитах тогда, когда процессы синтеза РНК, приводящие к образованию желтка, наиболее интенсивны. В настоящее время известно 45 видов животных, в развивающихся ооцитах которых можно наблюдать такие хромосомы. Хромосомы типа ламповых щёток не образуются в ооцитах млекопитающих[31].
Впервые хромосомы типа ламповых щёток были описаны В. Флеммингом в 1882 году. Название «хромосомы типа ламповых щёток» было предложено немецким эмбриологом И. Рюккертом (J.Rϋckert) в 1892 году.
По длине хромосомы типа ламповых щёток превышают политенные хромосомы. Например, общая длина хромосомного набора в ооцитах некоторых хвостатых амфибий достигает 5900 мкм.
Бактериальные хромосомы
Прокариоты (археи и бактерии, в том числе митохондрии и пластиды, постоянно обитающие в клетках большинства эукариот) не имеют хромосом в собственном смысле этого слова. У большинства из них в клетке имеется только одна макромолекула ДНК, замкнутая в кольцо (эта структура получила название нуклеоид). У ряда бактерий обнаружены линейные (не замкнутые в кольцо) макромолекулы ДНК. Помимо нуклеоида или линейных макромолекул, ДНК может присутствовать в цитоплазме прокариотных клеток в виде небольших замкнутых в кольцо молекул ДНК, так называемых плазмид, содержащих обычно незначительное, по сравнению с бактериальной хромосомой, число генов. Состав плазмид может быть непостоянен, бактерии могут обмениваться плазмидами в ходе парасексуального процесса.
Имеются данные о наличии у бактерий белков, связанных с ДНК нуклеоида, но гистонову них не обнаружено.
Хромосомы человека
В каждой ядросодержащей соматической клетке человека содержится 23 пары линейных хромосом, а также многочисленные копии митохондриальной ДНК. В нижеприведённой таблице показано число генов и оснований в хромосомах человека.
| Хромосома | Всего оснований[32] | Количество генов[33] | Количество белок-кодирующих генов[34] |
|---|---|---|---|
| 1 | 249250621 | 3511 | 2076 |
| 2 | 243199373 | 2368 | 1329 |
| 3 | 198022430 | 1926 | 1077 |
| 4 | 191154276 | 1444 | 767 |
| 5 | 180915260 | 1633 | 896 |
| 6 | 171115067 | 2057 | 1051 |
| 7 | 159138663 | 1882 | 979 |
| 8 | 146364022 | 1315 | 702 |
| 9 | 141213431 | 1534 | 823 |
| 10 | 135534747 | 1391 | 774 |
| 11 | 135006516 | 2168 | 1914 |
| 12 | 133851895 | 1714 | 1068 |
| 13 | 115169878 | 720 | 331 |
| 14 | 107349540 | 1532 | 862 |
| 15 | 102531392 | 1249 | 615 |
| 16 | 90354753 | 1326 | 883 |
| 17 | 81195210 | 1773 | 1209 |
| 18 | 78077248 | 557 | 289 |
| 19 | 59128983 | 2066 | 1492 |
| 20 | 63025520 | 891 | 561 |
| 21 | 48129895 | 450 | 246 |
| 22 | 51304566 | 855 | 507 |
| X-хромосома | 155270560 | 1672 | 837 |
| Y-хромосома | 59373566 | 429 | 76 |
| Всего | 3 079 843 747 | 36463 |
21364
|
Примечания
- ↑ 1 2 Тарантул В. З. Толковый биотехнологический словарь. — М.: Языки славянских культур, 2009. — 936 с. — 400 экз. — ISBN 978-5-9551-0342-6.
- ↑ Молекулярная биология клетки: в 3-х томах / Б. Альбертс, А. Джонсон, Д. Льюис и др. — М.-Ижевск: НИЦ «Регулярная и хаотическая динамика», Институт компьютерных исследований, 2013. — Т. I. — С. 309-336. — 808 с. —ISBN 978-5-4344-0112-8.
- ↑ Коряков, Жимулев, 2009, с. 13
- ↑ Филипченко Ю.А. Генетика. — Л.: Типография "Печатный Двор", 1929. — 379 с.
- ↑ Коряков, Жимулев, 2009, с. 9
- ↑ 1 2 Коряков, Жимулев, 2009, с. 12
- ↑ Morgan T.H., Sturtevant A.H., Muller H.J., Bridges C.B. The mechanism of mendelian heredity. — New York: Henry Holt and Company, 1915. — 262 с.
- ↑ The Nobel Prize in Physiology or Medicine 1933 (англ.). Nobel Media AB 2013. Проверено 11 декабря 2013.
- ↑ Рубцов Н. Б. Хромосома человека в четырех измерениях // Природа. — 2007. — № 8. — С. 3-10.
- ↑ Рубцов Н. Б. Организация хромосом: 70 лет спустя // Природа. — 2012. — № 10. — С. 24-31.
- ↑ Коряков, Жимулев, 2009, с. 29
- ↑ 1 2 Смирнов А. Ф. Структурно-функциональная организация хромосом. — СПб: Нестор-История, 2009. — 204 с. — ISBN 978-5-98187-486-4.
- ↑ Вершинин А. В. Центромеры и теломеры хромосом // Природа. — 2007. — № 9. — С. 21-27.
- ↑ Инге-Вечтомов, 2010, с. 84-87
- ↑ Коряков, Жимулев, 2009, с. 30
- ↑ Pikaard C. S. The epigenetics of nucleolar dominance // Trends in Genetics. — 2000. — Т. 16. — № 11. — С. 495-500.
- ↑ Зощук Н. В., Бадаева Е Д., Зеленин А. В. История современного хромосомного анализа. Дифференциальное окрашивание хромосом растений //Онтогенез. — 2003. — Т. 34. — № 1. — С. 5-18. — PMID 12625068.
- ↑ Рубцов Н.Б. Методы работы с хромосомами млекопитающих: Учеб. пособие. — Новосибирск: Новосиб. гос. ун-т., 2006. — 152 с. — ISBN 5-94356-376-8.
- ↑ Коряков, Жимулев, 2009, с. 91
- ↑ Разин С. В. Хроматин: упакованный геном / С. В. Разин, А. А. Быстрицкий. — М.: БИНОМ: Лаборатория знаний, 2009. — 176 с. —ISBN 978-5-9963-0087-7.
- ↑ Ченцов Ю. С., Бураков В. В. Хромонема — забытый уровень укладки хроматина в митотических хромосомах // Биологические мембраны. — 2005. — Т. 22. — № 3. — С. 178-187. — ISSN 0233-4755.
- ↑ Коряков, Жимулёв, 2009, с. 45-46
- ↑ Hassold T, Hall H, Hunt P (October 2007). «The origin of human aneuploidy: where we have been, where we are going». Hum. Mol. Genet. 16 Spec No. 2: R203–8. DOI:10.1093/hmg/ddm243.PMID 17911163.
- ↑ Holland AJ, Cleveland DW (June 2012). «Losing balance: the origin and impact of aneuploidy in cancer». EMBO Rep. 13 (6): 501–14. DOI:10.1038/embor.2012.55.PMID 22565320.
- ↑ Инге-Вечтомов, 2010, с. 401-414
- ↑ Коряков, Жимулев, 2009, с. 31
- ↑ 1 2 Браун Т.А. Геномы /Пер. с англ.= Genomes. — М.-Ижевск: Институт компьютерных исследований, 2011. — 944 с. — ISBN 978-5-4344-0002-2.
- ↑ Mandrioli M, Manicardi GC (August 2012). «Unlocking holocentric chromosomes: new perspectives from comparative and functional genomics?».Curr. Genomics 13 (5): 343–9.DOI:10.2174/138920212801619250.PMID 23372420.
- ↑ Dernburg AF (June 2001). «Here, there, and everywhere: kinetochore function on holocentric chromosomes». J. Cell Biol.153 (6): F33–8. PMID 11402076.
- ↑ Gall JG (December 2012). «Are lampbrush chromosomes unique to meiotic cells?». Chromosome Res. 20 (8): 905–9. DOI:10.1007/s10577-012-9329-5.PMID 23263880.
- ↑ Macgregor H (December 2012). «So what's so special about these things called lampbrush chromosomes?». Chromosome Res. 20 (8): 903–4. DOI:10.1007/s10577-012-9330-z. PMID 23239398.
- ↑ Human Genome Assembly Information (англ.). Genome Reference Concortium. Проверено 18 апреля 2013.
- ↑ Homo sapiens Genome: Statistics -- Build 37.3. NCBI. Проверено 18 апреля 2013.
- ↑ Ensembl. Location: whole genome (англ.). The Ensembl project.Проверено 25 апреля 2013. Архивировано из первоисточника 28 апреля 2013.
Литература
- Захаров А.Ф., Бенюш В.А., Кулешов Н.П., Барановская Л.И. Хромосомы человека. Атлас. — М.: Медицина, 1982. — 263 с.
- Инге-Вечтомов С.Г. Генетика с основами селекции: учебник для студентов высших учебных заведений / С. Г. Инге-Вечтомов. — СПб.: Изд-во Н-Л, 2010. — С. 193-194. — 720 с. — ISBN 978-5-94869-105-3.
- Коряков Д.Е., Жимулев И.Ф. Хромосомы. Структура и функции. — Новосибирск: Из-во СО РАН, 2009. — 258 с. — ISBN 978-5-7692-1045-7.
- Лима-де-Фариа А. Похвала «глупости» хромосомы. — М.: БИНОМ. Лаборатория знаний, 2012. — 312 с. — ISBN 978-5-9963-0148-5.
- Молекулярная биология клетки: в 3-х томах / Б. Альбертс, А. Джонсон, Д. Льюис и др. — М.-Ижевск: НИЦ «Регулярная и хаотическая динамика», Институт компьютерных исследований, 2013. — Т. I. — С. 325-359. — 808 с. — ISBN 978-5-4344-0112-8.
См. также
| [скрыть]Хромосомы | ||
|---|---|---|
| Основное | Кариотип · Плоидность · Мейоз · Митоз · Гомологичные хромосомы · Синапсис | |
| Классификация | Аутосома · Гоносома · Микрохромосома · Политенные хромосомы · Хромосомы типа ламповых щёток | |
| Структура | ||
| Перестройки и нарушения | ||