Темы

Австролоиды Альпийский тип Америнды Англия Антропологическая реконструкция Антропоэстетика Арабы Арменоиды Армия Руси Археология Аудио Аутосомы Африканцы Бактерии Балканы Венгрия Вера Видео Вирусы Вьетнам Гаплогруппы генетика Генетика человека Генетические классификации Геногеография Германцы Гормоны Графики Греция Группы крови Деградация Демография в России Дерматоглифика Динарская раса ДНК Дравиды Древние цивилизации Европа Европейская антропология Европейский генофонд ЖЗЛ Живопись Животные Звёзды кино Здоровье Знаменитости Зодчество Иберия Индия Индоарийцы интеллект Интеръер Иран Ирландия Испания Исскуство История Италия Кавказ Канада Карты Кельты Китай Корея Криминал Культура Руси Латинская Америка Летописание Лингвистика Миграция Мимикрия Мифология Модели Монголоидная раса Монголы Мт-ДНК Музыка для души Мутация Народные обычаи и традиции Народонаселение Народы России научные открытия Наши Города неандерталeц Негроидная раса Немцы Нордиды Одежда на Руси Ориентальная раса Основы Антропологии Основы ДНК-генеалогии и популяционной генетики Остбалты Переднеазиатская раса Пигментация Политика Польша Понтиды Прибалтика Природа Происхождение человека Психология Разное РАСОЛОГИЯ РНК Русская Антропология Русская антропоэстетика Русская генетика Русские поэты и писатели Русский генофонд Русь Семиты Скандинавы Скифы и Сарматы Славяне Славянская генетика Среднеазиаты Средниземноморская раса Схемы США Тохары Тураниды Туризм Тюрки Тюрская антропогенетика Укрология Уралоидный тип Филиппины Фильм Финляндия Фото Франция Храмы Хромосомы Художники России Цыгане Чехия Чухонцы Шотландия Эстетика Этнография Этнопсихология Юмор Япония C Cеквенирование E E1b1b G I I1 I2 J J1 J2 N N1c Q R1a R1b Y-ДНК

Поиск по этому блогу

пятница, 10 августа 2012 г.

Генетический код


Материал из Википедии — свободной энциклопедии
(Перенаправлено с Наследственная информация)
Генети́ческий код — свойственный всем живым организмам способ кодирования аминокислотной последовательности белков при помощи последовательности нуклеотидов.
В ДНК используется четыре нуклеотида — аденин (А) гуанин (G) цитозин (С), тимин (T), которые в русскоязычной литературе обозначаются буквами АГЦ и Т. Эти буквы составляют алфавит генетического кода. В РНК используются те же нуклеотиды, за исключением тимина, который заменён похожим нуклеотидом — урацилом, который обозначается буквой U (У в русскоязычной литературе). В молекулах ДНК и РНК нуклеотиды выстраиваются в цепочки и, таким образом, получаются последовательности генетических букв.

Генетический код
Для построения белков в природе используется 20 различных аминокислот. Каждый белок представляет собой цепочку или несколько цепочек аминокислот в строго определённой последовательности. Эта последовательность определяет строение белка, а следовательно все его биологические свойства. Набор аминокислот также универсален почти для всех живых организмов.
Реализация генетической информации в живых клетках (то есть синтез белка, кодируемого геном) осуществляется при помощи двух матричных процессов: транскрипции (то есть синтеза мРНК на матрицеДНК) и трансляции генетического кода в аминокислотную последовательность (синтез полипептидной цепи на мРНК). Для кодирования 20 аминокислот, а также сигнала «стоп», означающего конец белковой последовательности, достаточно трёх последовательных нуклеотидов. Набор из трёх нуклеотидов называется триплетом. Принятые сокращения, соответствующие аминокислотам и кодонам, изображены на рисунке.

Содержание

  
  • 1 Свойства
  • 2 Таблицы соответствия кодонов мРНК и аминокислот
  • 3 Вариации стандартного генетического кода
  • 4 История представлений о генетическом коде
  • 5 См. также
  • 6 Примечания
  • 7 Литература
  • 8 Ссылки


Свойства

  1. Триплетность — значащей единицей кода является сочетание трёх нуклеотидов (триплет, или кодон).
  2. Непрерывность — между триплетами нет знаков препинания, то есть информация считывается непрерывно.
  3. Неперекрываемость — один и тот же нуклеотид не может входить одновременно в состав двух или более триплетов (не соблюдается для некоторых перекрывающихся генов вирусовмитохондрий и бактерий, которые кодируют несколько белков, считывающихся со сдвигом рамки).
  4. Однозначность (специфичность) — определённый кодон соответствует только одной аминокислоте (однако, кодон UGA у Euplotes crassus кодирует две аминокислоты — цистеин и селеноцистеин)[1]
  5. Вырожденность (избыточность) — одной и той же аминокислоте может соответствовать несколько кодонов.
  6. Универсальность — генетический код работает одинаково в организмах разного уровня сложности — от вирусов до человека (на этом основаны методы генной инженерии; есть ряд исключений, показанный в таблице раздела «Вариации стандартного генетического кода» ниже).
  7. Помехоустойчивость — мутации замен нуклеотидов, не приводящие к смене класса кодируемой аминокислоты, называют консервативными; мутации замен нуклеотидов, приводящие к смене класса кодируемой аминокислоты, называют радикальными.


Таблицы соответствия кодонов мРНК и аминокислот

Генетический код, общий для большинства про- и эукариот. В таблице приведены все 64 кодона и указаны соответствующие аминокислоты. Порядок оснований — от 5' к 3' концу мРНК.
2-е основание
U
C
A
G
1-е
основание
U
UUC (Phe/F)Фенилаланин
UUA (Leu/L)Лейцин
UUG (Leu/L)Лейцин
UCU (Ser/S)Серин
UCC (Ser/S)Серин
UCA (Ser/S)Серин
UCG (Ser/S)Серин
UAU (Tyr/Y)Тирозин
UAC (Tyr/Y)Тирозин
UAA Ochre (Стоп)
UAG Amber (Стоп)
UGU (Cys/C)Цистеин
UGC (Cys/C)Цистеин
UGA Opal (Стоп)
UGG (Trp/W)Триптофан
C
CUU (Leu/L)Лейцин
CUC (Leu/L)Лейцин
CUA (Leu/L)Лейцин
CUG (Leu/L)Лейцин
CCU (Pro/P)Пролин
CCC (Pro/P)Пролин
CCA (Pro/P)Пролин
CCG (Pro/P)Пролин
CAU (His/H)Гистидин
CAC (His/H)Гистидин
CAA (Gln/Q)Глутамин
CAG (Gln/Q)Глутамин
CGU (Arg/R)Аргинин
CGC (Arg/R)Аргинин
CGA (Arg/R)Аргинин
CGG (Arg/R)Аргинин
A
AUU (Ile/I)Изолейцин
AUC (Ile/I)Изолейцин
AUA (Ile/I)Изолейцин
AUG (Met/M)МетионинStart[2]
ACU (Thr/T)Треонин
ACC (Thr/T)Треонин
ACA (Thr/T)Треонин
ACG (Thr/T)Треонин
AAU (Asn/N)Аспарагин
AAC (Asn/N)Аспарагин
AAA (Lys/K)Лизин
AAG (Lys/K)Лизин
AGU (Ser/S)Серин
AGC (Ser/S)Серин
AGA (Arg/R)Аргинин
AGG (Arg/R)Аргинин
G
GUU (Val/V)Валин
GUC (Val/V)Валин
GUA (Val/V)Валин
GUG (Val/V)Валин
GCU (Ala/A)Аланин
GCC (Ala/A)Аланин
GCA (Ala/A)Аланин
GCG (Ala/A)Аланин
GAC (Asp/D)Аспарагиновая кислота
GAG (Glu/E)Глутаминовая кислота
GGU (Gly/G)Глицин
GGC (Gly/G)Глицин
GGA (Gly/G)Глицин
GGG (Gly/G)Глицин
Секторный вариант записи, внутренний круг — 1-е основание кодона (от 5'-конца)

Обратная таблица (указаны кодоны для каждой аминокислоты, а также стоп-кодоны)
Ala/A
GCU, GCC, GCA, GCG
Leu/L
UUA, UUG, CUU, CUC, CUA, CUG
Arg/R
CGU, CGC, CGA, CGG, AGA, AGG
Lys/K
AAA, AAG
Asn/N
AAU, AAC
Met/M
AUG
Asp/D
GAU, GAC
Phe/F
UUU, UUC
Cys/C
UGU, UGC
Pro/P
CCU, CCC, CCA, CCG
Gln/Q
CAA, CAG
Ser/S
UCU, UCC, UCA, UCG, AGU, AGC
Glu/E
GAA, GAG
Thr/T
ACU, ACC, ACA, ACG
Gly/G
GGU, GGC, GGA, GGG
Trp/W
UGG
His/H
CAU, CAC
Tyr/Y
UAU, UAC
Ile/I
AUU, AUC, AUA
Val/V
GUU, GUC, GUA, GUG
START
AUG
STOP
UAG, UGA, UAA


Вариации стандартного генетического кода

Первый пример отклонения от стандартного генетического кода был открыт в 1979 году при исследовании генов митохондрий человека. С того времени было найдено несколько подобных вариантов [3], включая многообразные альтернативные митохондриальные коды,[4], например, прочитывание стоп-кодона УГА в качестве кодона, определяющего триптофан у микоплазм. У бактерий и архей ГУГ и УУГ часто используются как стартовые кодоны. В некоторых случаях гены начинают кодировать белок со старт-кодона, который отличается от обычно используемого данным видом[3].
В некоторых белках нестандартные аминокислоты, такие как селеноцистеин и пирролизин, вставляются рибосомой, прочитывающей стоп-кодон, что зависит от последовательностей в мРНК. Селеноцистеин сейчас рассматривается в качестве 21-й, а пирролизин 22-й аминокислот, входящих в состав белков.
Несмотря на эти исключения, у всех живых организмов генетический код имеет общие черты: кодон состоят из трёх нуклеотидов, где два первых являются определяющими, кодоны транслируются тРНК и рибосомами в последовательность аминокислот.
Отклонения от стандартного генетического кода[3][5].
Пример
Кодон
Обычное значение
Читается как:
Некоторые виды дрожжей рода Candida
CUG
Лейцин
Серин
Митохондрии, в частности у Saccharomyces cerevisiae
CU(U, C, A, G)
Лейцин
Серин
Митохондрии высших растений
CGG
Аргинин
Триптофан
Митохондрии (у всех без исключения исследованных организмов)
UGA
Стоп
Триптофан
Митохондирии млекопитающих, дрозофилыS. cerevisiae и многих простейших
AUA
Изолейцин
Метионин = Старт
Прокариоты
GUG
Валин
Старт
Эукариоты (редко)
CUG
Лейцин
Старт
Эукариоты (редко)
GUG
Валин
Старт
Прокариоты (редко)
UUG
Лейцин
Старт
Эукариоты (редко)
ACG
Треонин
Старт
Митохондрии млекопитающих
AGC, AGU
Серин
Стоп
Митохондрии дрозофилы
AGA
Аргинин
Стоп
Митохондрии млекопитающих
AG(A, G)
Аргинин
Стоп


История представлений о генетическом коде

Начав изучать кодоны совместно с Джеймсом Уотсоном в 1953 году Фрэнсис Крик сделал предположение, что только 20 кодонов имеют значение, а остальные 44 триплета являются бессмысленными.[6]
Код Крика не имел знаков препинания (стартовых и стоповых кодонов), поскольку бессмысленные кодоны были фактически невидимыми для адапторов, так что знак, указывающий на начало считывания, был не нужен. Эта концепция сразу получила почти безоговорочное признание, но ненадолго, лишь до тех пор, пока новые данные в начале 60-х годов не обнаружили её несостоятельность. Тогда эксперименты показали, что кодоны, считавшиеся Криком бессмысленными, могут провоцировать белковый синтез в пробирке, и к 1965 году был установлен смысл всех 64 триплетов. Оказалось, что некоторые кодоны просто-напросто избыточны, то есть целый ряд аминокислот кодируется двумя, четырьмя или даже шестью триплетами.


См. также


Примечания

  1.  Genetic code supports targeted insertion of two amino acids by one codon. Turanov AA, Lobanov AV, Fomenko DE, Morrison HG, Sogin ML, Klobutcher LA, Hatfield DL, Gladyshev VN. Science. 2009 Jan 9;323(5911):259-61.
  2.  Кодон AUG кодирует метионин, но одновременно служит стартовым кодоном — с первого AUG-кодона мРНК как правило начинается трансляция.
  3. ↑ 1 2 3 NCBI: «The Genetic Codes», Compiled by Andrzej (Anjay) Elzanowski and Jim Ostell
  4.  Jukes TH, Osawa S, The genetic code in mitochondria and chloroplasts., Experientia. 1990 Dec 1;46(11-12):1117-26.
  5.  Osawa S, Jukes TH, Watanabe K, Muto A (March 1992). «Recent evidence for evolution of the genetic code». Microbiol. Rev. 56 (1): 229–64. PMID 1579111.
  6.  Crick FH, Barnett L, Brenner S, Watts-Tobin RJ (December 1961). «General nature of the genetic code for proteins» (PDF reprint). Nature 192: 1227–32. DOI:10.1038/1921227a0PMID 13882203.


Литература

  • Азимов А. Генетический код. От теории эволюции до расшифровки ДНК. — М.: Центрполиграф, 2006. — 208 с — ISBN 5-9524-2230-6.
  • Ратнер В. А.Генетический код как система — Соросовский образовательный журнал, 2000, 6, № 3, с.17-22.


Ссылки