Темы

Австролоиды Альпийский тип Америнды Англия Антропологическая реконструкция Антропоэстетика Арабы Арменоиды Армия Руси Археология Аудио Аутосомы Африканцы Бактерии Балканы Венгрия Вера Видео Вирусы Вьетнам Гаплогруппы генетика Генетика человека Генетические классификации Геногеография Германцы Гормоны Графики Греция Группы крови Деградация Демография в России Дерматоглифика Динарская раса ДНК Дравиды Древние цивилизации Европа Европейская антропология Европейский генофонд ЖЗЛ Живопись Животные Звёзды кино Здоровье Знаменитости Зодчество Иберия Индия Индоарийцы интеллект Интеръер Иран Ирландия Испания Исскуство История Италия Кавказ Канада Карты Кельты Китай Корея Криминал Культура Руси Латинская Америка Летописание Лингвистика Миграция Мимикрия Мифология Модели Монголоидная раса Монголы Мт-ДНК Музыка для души Мутация Народные обычаи и традиции Народонаселение Народы России научные открытия Наши Города неандерталeц Негроидная раса Немцы Нордиды Одежда на Руси Ориентальная раса Основы Антропологии Основы ДНК-генеалогии и популяционной генетики Остбалты Переднеазиатская раса Пигментация Политика Польша Понтиды Прибалтика Природа Происхождение человека Психология Разное РАСОЛОГИЯ РНК Русская Антропология Русская антропоэстетика Русская генетика Русские поэты и писатели Русский генофонд Русь Семиты Скандинавы Скифы и Сарматы Славяне Славянская генетика Среднеазиаты Средниземноморская раса Схемы США Тохары Тураниды Туризм Тюрки Тюрская антропогенетика Укрология Уралоидный тип Филиппины Фильм Финляндия Фото Франция Храмы Хромосомы Художники России Цыгане Чехия Чухонцы Шотландия Эстетика Этнография Этнопсихология Юмор Япония C Cеквенирование E E1b1b G I I1 I2 J J1 J2 N N1c Q R1a R1b Y-ДНК

Поиск по этому блогу

пятница, 15 ноября 2013 г.

КРЕЙГ ВЕНТЕР: «МЕНЯ ПУГАЮТ НЕ СТОЛЬКО НОВЫЕ ТЕХНОЛОГИИ, СКОЛЬКО УПУЩЕННЫЕ ВОЗМОЖНОСТИ»

Один из пионеров расшифровки человеческого генома и создатель первого синтетического организма рассуждает о прошлом, настоящем и будущем синтетической биологии.
Имя Крейга Вентера в современной науке более чем известно: достаточно сказать, что об этом учёном, по сей день активно работающем, есть статья в русскоязычной Википедии (хотя по объёму она явно уступает англоязычной заметке). Г-н Вентер стоял у истоков расшифровки человеческого генома в начале 2000-х, а в 2010 году сообщил о создании синтетического организма с минимально возможным набором генов.
При этом его деятельность часто носила оттенок скандальности: расшифровкой генома человека он занимался независимо от «официального» международного проекта, и у многих метод Вентера не вызывал доверия. Кроме того, он рассчитывал использовать всё это в медицинско-коммерческих целях. Его компании удалось прочитать человеческий геном даже раньше конкурентов, но вскоре после этого г-н Вентер был вынужден уйти из неё.


Крейг Вентер (фото Erica Berger).

Выдающиеся организаторские и научные способности вместе с вольной или невольной скандальностью делают Крейга Вентера действительно крупной фигурой в современной науке. Недавно учёный выпустил книгу «Жизнь со скоростью света: от двойной спирали к цифровому бытию» («Life at the Speed of Light: From the Double Helix to the Dawn of Digital Life»), в которой среди прочего описал историю создания первого синтетического организма. В интервью, данном журналу Wired, можно узнать не только о содержании этого труда, но и о том, чтоисследователь думает о настоящем и будущем синтетической биологии, научно-этических проблемах и даже... о жизни на Марсе. 

— В «Жизни со скоростью света» вы утверждаете, что человечество входит в новую фазу эволюции. Что вы под этим понимаете? 

— Индустриальная эпоха заканчивается, переходя в эпоху биологического дизайна. Уже сейчас ДНК существует в виде оцифрованных данных. Благодаря развитию генетической инженерии — и синтетической биологии — мы можем манипулировать ДНК как нам заблагорассудится, а благодаря оцифровке биологической информации способны передавать её с помощью электромагнитных волн куда угодно, как если бы у нас был «биологический телепортер». Геном — это что-то вроде программного обеспечения клетки, и чем больше мы про него знаем, тем лучше понимаем, как работает клетка. Более того, мы можем отредактировать этот «софт» так, чтобы изменить работу «железа», то есть клеточных молекулярных машин. 

— Из всего того, что вы сделали за последние двадцать лет, что вам кажется наиболее важным? 

— Проект по созданию синтетической клетки. Но если попробовать выделить какое-то одно исследование, которое больше остальных расширило бы мои представления о жизни, то это работа 2007 года Genome Transplantation in Bacteria: Changing One Species to Another, которую мы с командой опубликовали в Science. В ней мы не просто убедились, что манипуляцией с ДНК можно превратить один вид в другой: после неё стало окончательно понятно, что с геномом можно обращаться как с программой, и именно эта работа заложила основы для создания синтетической клетки. 

— В вашей книге есть впечатляющие примеры неудач, с которыми вы сталкивались на пути к синтетическому организму. Какое из разочарований было самым сильным? 

— Когда мы только начинали работу над синтетическим организмом JCVI-syn1.0, то выбрали в качестве отправной точки бактерию Mycoplasma genitalium — из-за её исключительно маленького генома (до недавнего времени M. genitalium считалась по этому параметру чемпионом среди живых организмов, не считая вирусов. — Прим. К. С.). Но тут оказалось, что M. genitalium в лабораторных условиях растёт чрезвычайно медленно. Если, скажем, кишечная палочка делится раз в 20 минут, то M. genitalium для этого требовалось 12 часов. Следовательно, вместо того чтобы узнать результат эксперимента на следующий день, нужно было ждать несколько недель. Я чувствовал, что весь тяжелейший труд, потраченный на эту бактерию, закончится ничем, и мы переключились наMycoplasma mycoides, геном которой раза в два больше, чем у M. genitalium, зато и растёт она гораздо быстрее. 

— Многие из ваших коллег были весьма впечатлены вашей работой; одни восторгались самим появлением искусственной клетки, другие — техническими ухищрениями, которые были при этом использованы. Но были и такие, которые отнеслись к синтетическому организму довольно пренебрежительно: дескать, это совсем не то, что создание жизни «с нуля». 

— Говорящие так не слишком отдают себе отчёт в том, что в данном случае означает выражение «жизнь с нуля». Возьмём, к примеру, кекс. Вы можете купить готовый. Можете взять специальную смесь, в которую нужно добавить лишь яйца, масло и воду. Можете «собрать» кекс из индивидуальных ингредиентов: муки, сахара, соли, молока, соды и т. п. Это, пожалуй, можно считать изготовлением кекса «с нуля». Но вряд ли кто-то при этом будет синтезировать соду из натрия, углерода, водорода, кислорода. Если перенести требование «абсолютного нуля» на синтетический организм, то не придётся ли нам заняться сборкой белков, липидов и нуклеиновых кислот даже не из предшественников-мономеров, а из тех же самых простейших элементов периодической таблицы?

— Есть параллельные исследования, посвящённые созданию синтетических организмов, но в виртуальном мире (о чём вы упоминаете в своей книге). Насколько удовлетворительны такие модели? 

— Виртуальные клетки уже успели подтвердить свою «компетентность»: они действительно помогают узнать больше о том, что происходит в реальности. Вообще эти исследования начались в 1996 году, когда Масару Томита вместе со своими сотрудниками начал работать с только что расшифрованным геномом Mycoplasma genitalium и запустил так называемый E-Cell Project. Самые последние труды говорят о том, что исследователи способны на основании геномной информации создать виртуальную клетку, которая будет довольно близка к настоящей. 

— Вас постоянно вовлекали в дискуссии об этических аспектах создания синтетических организмов. Имеет ли смысл говорить об этом сегодня? 

— Проблема исследовательской ответственности сопровождает любое открытие и любую технологию, и все подобные вопросы можно было бы адресовать, например, тому, кто первым добыл огонь. Буквально каждые несколько месяцев проходят разные публичные мероприятия, посвящённые этическим проблемам, сопряжённым с новыми технологиями. Разумеется, важно прилагать все усилия во всех общественных областях, от образования до политики, чтобы новые технологии оставались не только эффективными, но и безопасными. Но за общественными дискуссиями не следует забывать, что синтетическая биология может дать ответы на ключевые вопросы медицины, экологии и прочих областей науки, касающихся всех и каждого. 

— В чём кроется бóльшая опасность — в исследовательских ошибках или в злонамеренном использовании результатов биологических исследований? 

— Меня больше заботят случайные утечки научной информации. Синтетическая биология, во-первых, во многом полагается на исследователей небиологического профиля, математиков и инженеров, чьи познания в биологии не так уж высоки. Во-вторых, молекулярно-биологические методы сегодня сверхдоступны; набор для проведения полимеразной цепной реакции позволяет провести эту самую реакцию едва ли не на кухне. И всё это биологическое знание может легко оказаться за пределами структур — правительственных, коммерческих, образовательных, — которые обеспечивают безопасность и культуру научных исследований. Последствия таких «биоинформационных утечек» непредсказуемы — особенно если речь идёт о «программируемой жизни». 


Синтетический организм JVCI-syn1.0, созданный Крейгом Вентером и его сотрудниками на основе бактерий микоплазмы (фото Dr. Thomas Deerinck).

— Не отказаться ли нам тогда вообще от синтетической биологии? 

— Всё-таки мой самый большой страх связан не с тем, что технологии нам навредят, а с тем, что мы упустим возможности, которые они нам предоставляют. С их помощью мы можем решить, например, важнейшие проблемы, связанные с перенаселением и экологическими изменениями на планете. 

— Вы работали над тем, как превратить информацию из ДНК в цифровой сигнал и передать такой сигнал на машину, которая на его основе реконструирует живой организм... 

— Сейчас мы можем отдать цифровой ДНК-код программе, которая способна восстановить, синтезировать эту последовательность; такие эксперименты мы ставим в нашей компании Synthetic Genomics (г-н Вентер основал Synthetic Genomics вместе со своим давним коллегой, нобелевским лауреатом Хамилтоном Смитом. — Прим. К. С.). Аппарат-синтезатор создаёт короткие ДНК-последовательности, которые потом соединяются специальным роботом-сборщиком. Синтез фрагментов ДНК, внесение в них специальных знаков, определяющих их итоговую последовательность, сборка — всё это выполняется автоматически. Мы используем мобильную лабораторию, которая позволяет брать образцы почвы, анализировать в них ДНК; полученная информация образует своеобразное «облако». Сведения из такого облака можно передать на следующий блок, который будет комбинировать из них программу нового организма. 

— Что может дать эта технология с практической точки зрения? 

— Самое очевидное применение — создание противовирусных вакцин. Когда в 2009 году разразилась пандемия свиного гриппа, за полгода были созданы сотни миллионов препаратов вакцины — но даже этого было мало: тогда, напомню, погибло 250 тыс. человек. При производстве вакцины вирус растёт в оплодотворённых куриных яйцах, процесс занимает 35 дней. Чем сильнее, чем «патогеннее» вирус, тем более критичным будет время, которое тратится на разработку вакцины.

Сейчас мы вместе с компанией «Новартис» как раз заняты тем, чтобы ускорить этот процесс с помощью нашего метода. Геном вируса полностью прочитывается, после чего в нём выбираются гены, которые могут послужить хорошим материалом для вакцины, — как, например, гены белков оболочки. Эти белки далее тестируются на иммунитете: насколько сильный иммунный ответ они вызывают. Информационная работа с вирусом позволяет создать вакцину менее чем за пять дней. В принципе, метод был опробован ещё в 2011 году и с тех пор показал свою эффективность на множестве штаммов гриппа. 

— А ещё вы занимаетесь проблемой лекарственной устойчивости бактерий... 

— Да, страх перед универсально устойчивыми бактериями заставляет многих говорить о том, что мы скоро узнаем, как жилось нашим предкам без антибиотиков. Однако хорошая альтернатива антибиотикам — это фаги. Каждые несколько дней половина всех бактерий на Земле погибает от фагов. С точки зрения медицины у фагов есть преимущество перед антибиотиками: они высокоспецифичны и не бьют по хорошим симбиотическим бактериям. Однако бактерии, в свою очередь, вырабатывают устойчивость и к фагам. Кроме того, сам организм человека стремится избавиться от них как можно скорее. Опять же информационные манипуляции с ДНК позволяют решить эти проблемы: нужно лишь создать необходимую программу для фага. Разумеется, для этого нужно перебирать множество вариантов, но наш метод позволяет проектировать и создавать до 300 новых фагов в день, так что много вариантов не проблема. 

Хотя сейчас мы ограничены небольшими организмами — вирусами и бактериальными клетками, в будущем собираемся перейти к более сложным системам, вплоть до тканей...

Очевидно, что конструирование и переконструирование организмов с помощью «ДНК-софта» и впрямь может открыть перед нами эру биологического дизайна. Однако амбиции Крейга Вентера одной лишь нашей планетой не ограничиваются. ДНК-конструкторы и ДНК-передатчики могли бы сильно упростить жизнь, к примеру, марсианским колонистам, которым не пришлось бы тащить с собой с Земли растения и бактерии, что называется, «на развод». Судя по тому, что исследования г-на Вентера спонсирует НАСА, американские космические чиновники прониклись масштабом идеи.

Однако г-н Вентер рассчитывает на большее: он полагает, что методы расшифровки и анализа ДНК позволят обнаружить жизнь на других планетах. В том числе, как это ни парадоксально, и на Марсе. Да, г-н Вентер — один из тех, для кого вопрос «Есть ли жизнь на Марсе?» до сих пор не потерял своей актуальности. По мнению Крейга, жизнь в космосе не нашли до сих пор просто потому, что плохо искали. Он упоминает о своей работе с BP, когда в образцах воды, поднятых из метановых месторождений на глубине 2,2 км, обнаружилось невиданное изобилие микробов — почти такое же, по его словам, как в океане. И если уже в недрах Земли творится такое, то почему бы бактериям не жить и в глубинах Марса?..

Впрочем, чтобы не углубляться в обсуждение вопросов, есть ли жизнь на Марсе и обязательно ли она должна быть ДНК-белковой, на этом мы и закончим рассказ о Крейге Вентере — несмотря ни на что, выдающемся учёном нашего времени.

Подготовлено по материалам Ars Technica.

http://compulenta.computerra.ru/chelovek/biologiya/10009996/