Темы

C Cеквенирование E E1b1b G I I1 I2 J J1 J2 N N1c Q R1a R1b Y-ДНК Австролоиды Альпийский тип Америнды Англия Антропологическая реконструкция Антропоэстетика Арабы Арменоиды Армия Руси Археология Аудио Аутосомы Африканцы Бактерии Балканы Венгрия Вера Видео Вирусы Вьетнам Гаплогруппы Генетика человека Генетические классификации Геногеография Германцы Гормоны Графики Греция Группы крови ДНК Деградация Демография в России Дерматоглифика Динарская раса Дравиды Древние цивилизации Европа Европейская антропология Европейский генофонд ЖЗЛ Живопись Животные Звёзды кино Здоровье Знаменитости Зодчество Иберия Индия Индоарийцы Интеръер Иран Ирландия Испания Исскуство История Италия Кавказ Канада Карты Кельты Китай Корея Криминал Культура Руси Латинская Америка Летописание Лингвистика Миграция Мимикрия Мифология Модели Монголоидная раса Монголы Мт-ДНК Музыка для души Мутация Народные обычаи и традиции Народонаселение Народы России Наши Города Негроидная раса Немцы Нордиды Одежда на Руси Ориентальная раса Основы Антропологии Основы ДНК-генеалогии и популяционной генетики Остбалты Переднеазиатская раса Пигментация Политика Польша Понтиды Прибалтика Природа Происхождение человека Психология РАСОЛОГИЯ РНК Разное Русская Антропология Русская антропоэстетика Русская генетика Русские поэты и писатели Русский генофонд Русь США Семиты Скандинавы Скифы и Сарматы Славяне Славянская генетика Среднеазиаты Средниземноморская раса Схемы Тохары Тураниды Туризм Тюрки Тюрская антропогенетика Укрология Уралоидный тип Филиппины Фильм Финляндия Фото Франция Храмы Хромосомы Художники России Цыгане Чехия Чухонцы Шотландия Эстетика Этнография Этнопсихология Юмор Япония генетика интеллект научные открытия неандерталeц

Поиск по этому блогу

вторник, 3 ноября 2015 г.

Археи «хамят» и помогают



Статья на конкурс «био/мол/текст»: В 2001 году группа ученых под руководством Кристиана Рудольфа сообщила об открытии нового вида архей. За полтора десятка лет этот вид обрел свое название, а у ученых прибавилось работы. Причем у всех: от филологов до нанотехнологов. Чем же так привлек внимание специалистов этот скромный обитатель европейского водоема?

Обратите внимание!
Эта работа опубликована в номинации «лучшее новостное сообщение» конкурса «био/мол/текст»-2015.

Спонсором номинации «Лучшая статья о механизмах старения и долголетия» является фонд «Наука за продление жизни». Спонсором приза зрительских симпатий выступила фирма Helicon.

Спонсоры конкурса: Лаборатория биотехнологических исследований 3D Bioprinting Solutions и Студия научной графики, анимации и моделирования Visual Science.

Трудности перевода

Археи, удостоенные чести быть выделенными в отдельный домен наряду с бактериями и эукариотами [1], не перестают удивлять ученых. Казалось бы, что еще: необычная структура биомембран, способность к существованию в горячих (щелочных, соленых — нужное подчеркнуть) источниках и водоемах* [2], разнообразие типов строения клеточной стенки вплоть до ее отсутствия (рис. 1) [3]? На первый взгляд, вся «экзотика» уже известна. Но так только кажется.
* — Значительный, если не определяющий, вклад в выживаемость архей в широком спектре условий (вплоть до экстремальных) внесли их уникальные мембраны, характеризующиеся высокой плотностью упаковки, отсутствием фазового перехода в широком диапазоне температур, низкой проницаемостью для воды и ионов и т.д. А для поддержания такой исключительной мембранной кондиции археям нужно было выбрать «правильные» липиды: «Прочные, но гибкие: молекулярная динамика объясняет уникальность биомембран архей» [4]. — Ред.
Строение клеточной стенки у архейРисунок 1. Варианты строения клеточной стенки у разных архей. Клеточные стенки архей чрезвычайно разнообразны как по структуре, так и по химическому составу. Характерной поверхностной структурой является S-слой (SL) — своего рода «покрывало» из гликопротеинов, заякоренных в мембране клеток (СМ). У некоторых архей S-слой может дополняться еще одним белковым слоем (PS) — как у Methanospirillum — или отсутствовать. Крайний случай — наличие второй, наружной, мембраны (ОСМ) — как у персонажа этой статьи. Прочие сокращения: GC — гликокаликс; GG — глутаминилгликан; HP — гетерополисахарид; LP — липогликан; MC — метанохондроитин; PM — псевдомуреин. Рисунок из [3], с изменениями.
Всё началось с малоприметной статьи в журнале Applied and Environmental Microbiology, в которой сообщалось об обнаружении новой кокковой формы архей [5]. По месту находки — болоту Зиппенауэр (Sippenauer Moor) в Баварии — микроорганизм назвали SM1. Оказалось, что обитатель холодных придонных вод на глубинах до 25-35 м довольно привередлив: долгое время не удавалось вырастить его в лабораторных условиях. С одной стороны, некультивируемые бактерии — не редкость в мире прокариот [6, 7]. В большинстве случаев таких неуловимых «новичков» удается идентифицировать методом полимеразной цепной реакции (ПЦР) [8, 9], но здесь исследователей интересовала только чистая культура. Поэтому в ход пошли даже полиэтиленовые сети, специально погружавшиеся на дно водоема и игравшие роль огромных чашек Петри. Наконец в 2005 году труды ученых увенчались успехом: новый вид-кандидат был подробно охарактеризован в составе биоплёнки, но самое главное открылось позднее. На электронных микрофотографиях биологи заметили сотни длинных, до 6–7 мкм, отростков, отходящих от клеток в разные стороны (рис. 2).
Археи в составе биоплёнкиРисунок 2. Археи Ca. A. hamiconexum в составе биоплёнки. Клетки выглядят «опушёнными» из-за экзополисахаридного матрикса и многочисленных выростов — хамей. Изображение получено с помощью сканирующей электронной микроскопии. Рисунок из [12].
Дальше — больше: выяснилось, что по строению эти выросты не похожи ни на какие из обнаруженных у прокариот ранее [10]. Одни определяли их как «жемчужное ожерелье», другие видели в них «колючую проволоку», третьи — «гарпуны» (рис. 3). Этим, наверное, и был обусловлен выбор их названия: hamus — лат. «крючок» (мн. число — hami). Так научный английский пополнился еще одним словом, переходящим во множественное число не по правилам.
Микроструктура хамейРисунок 3. Микроструктура хамей Ca. A. hamiconexum. А — Скопления выростов, напоминающие ивовые ветви или водоросли. Заметны мельчайшие детали: «крючки» на концах хамей и «шипы». Б — Изображение выроста, полученное методом криоэлектронной томографии. В — 3D-структура, построенная на основе Б. Г — Подробная схема строения отдельного хамуса. Рисунок скомбинирован на основе изображений из [10, 11], с изменениями.

Hami — не хами́

ХамиРисунок 4. Хами, окрашенные флуоресцирующими антителами к их основному белку. Выросты выглядят оранжевыми на фоне окрашенных в синий цвет скоплений ДНК в клетках архей. Рисунок из [11].
В 2015 году рабочая группа из двенадцати научных институтов и лабораторий во главе с Александрой Перрас обобщила результаты своих исследований, посвященных изучению структуры хáмей (назовем их так по аналогии с пилями) «Candidatus Altiarchaeum hamiconexum» — это принятое на данный момент имя нашего «героя» [11]. В частности, был охарактеризован главный структурный белок — сильно гликозилированный фибриллярный полипептид с молекулярной массой 120 кДа. Субъединицы этого белка, уложенные особым образом, формируют субмикрофибриллы, которые, переплетаясь по три, подобно волокнам пеньки в канате, формируют более крупные, видимые в микроскоп фибриллы (рис. 4). Но к чему микробам эти белковые «якоря» и «шипы»?
Само собой, напрашивался вывод об их структурной роли в формировании биоплёнок [12]. Действительно, плотно сомкнутые (рис. 3А) ряды «шиповатых», переплетенных подобно ветвям, фибрилл как нельзя лучше подходят на роль «цемента» для микробного сообщества. Но ученым такой вывод показался слишком простым.
С помощью метагеномного анализа удалось выявить ген, кодирующий основной белок хамей. Раз знаем ген — знаем и аминокислотную последовательность белка. Теперь можно предсказать варианты укладки полипептидной цепи — в этом помогают системы MAFFT (анализ множества линейных последовательностей аминокислотных остатков) и PSIPRED (прогноз вторичной структуры) [13]. На этом уровне были выявлены ожидаемые сходства в строении белка хамей с компонентами S-слоев других архей (рис. 1) [11, 14]. А вот сравнение полученной структуры белка с имеющимися в базе данных pGenThreader позволило «сроднить» его с белками, и вовсе не встречающимися у архей. Два из них — регулятор транспорта гепарина у Bacteroides thetaiotaomicron и ксилоглюканаза Clostridium thermocellum — принадлежат бактериям, третий — белок человека, связывающийся с поврежденными участками ДНК. Если допустить, что третье совпадение случайно, то не обратить внимания на первые два нельзя.
Ксилоглюканазы — ферменты, расщепляющие полисахариды клеточных стенок растений, — играют важную роль в преобразовании соединений углерода бактериями-редуцентами. Нельзя исключить, что хами могут участвовать в питании нашего «кандидата», осуществляя внеклеточное расщепление биополимеров [11]. Сапротрофам выделение экзоферментов свойственно, но вот белковые фибриллы с функцией фермента — это что-то новое!
Сходство же с мембранным белком-транспортёром гепарина лишь подтвердило предположение о возможности происхождения хамей от мембранных белков, вероятно, приобретших в процессе эволюции способность к самосборке. С этой гипотезой согласуется и отсутствие у Ca. A. hamiconexum типичного для архей S-слоя, своеобразной заменой которому служит наружная мембрана.

Архейная «паутина»

Чем больше ученые узнавали о свойствах основного белка хамей, тем больше удивлялись (табл. 1). Известно, что Ca. A. hamiconexum обитает в среде с довольно постоянными условиями: на 35-метровой глубине, в слабокислой, насыщенной сероводородом воде при температуре не выше +10 °С, — однако в условиях опыта хами разрушались только в резко щелочных условиях, а температуру выдерживали и до +70 °С. Непонятно пока, почему у этих микроорганизмов осталась столь широкая свобода действий в деле приспособления к условиям окружающей среды — ведь их условия обитания несравнимы с горячими вулканическими источниками. Мимо этих моментов не прошли нанобиотехнологи, занятые поисками новых биоматериалов. Значительный «рабочий» диапазон температур и рН, в котором хами сохраняют свою структуру, биоразлагаемость, высокая чувствительность к трипсину — все эти свойства могут быть использованы в областях, связанных с хирургией, и особенно тех, где возможно применение врéменных имплантатов.
Таблица 1. Некоторые свойства структурного белка хамей. Таблица составлена по материалам [10, 11].
Физико-химические свойстваЗначение
Молекулярная масса97 кДа*
«Рабочий» диапазон температур0...+70 °С
«Рабочий» диапазон рН0,5–11,5
Чувствительность к протеазамТрипсин, субтилизин А, проназа
* указано значение для дегликозилированной формы.
С середины семидесятых годов ХХ века рассматривается вопрос биотехнологического производства волокна на основе белка паутины. Однако получение «паучьего шёлка» довольно затратно и трудоемко — допускалась даже возможность создания своеобразных паучьих «фабрик». Попытки внедрения генов, кодирующих спидроин (белок паутины), в пресловутую E. coli также не дали плодотворных результатов — выход продукта оказался ничтожным. Такая ситуация отнюдь не редка в случаях, когда масса молекул слишком велика (для белка паутины — 270 кДа) [15]. Ограничение удалось снять только после получения другого, более активного штамма-продуцента.
А что, если попытаться сделать то же самое с генами, ответственными за синтез субъединиц фибрилл Ca. A. hamiconexum? Авторы статьи [11] полагают, что благодаря такому подходу удастся получить «архейный шёлк», не уступающий по своим свойствам паутине, а в чём-то (например, в способности к образованию поперечных сцепок за счет необычной микроструктуры) даже превосходящий ее. Ведь не зря же всё-таки природа придумала и сами хами, и украшающие их «крючки» и «шипы».

Литература

  1. биомолекула: «Карл Вёзе (1928–2012)»;
  2. биомолекула: «Почти детективная история о том, как элемент-убийца помог возникнуть жизни»;
  3. Klingl A. (2014). S-layer and cytoplasmic membrane — exceptions from the typical archaeal cell wall with a focus on double membranes. Front. Microbiol5, 624. doi: 10.3389/fmicb.2014.00624;
  4. Чугунов А. (2014). Прочные, но гибкие: молекулярная динамика объясняет уникальность биомембран архей. Сайт «Теории и практики»;
  5. Rudolph C., Wanner G., Huber R. (2001). Natural communities of novel archaea and bacteria growing in cold sulfurous springs with a string-of-pearls-like morphology. Appl. Environ. Microbiol. 67, 2336–2344;
  6. Brune A. and Dietrich C. (2015). The gut microbiota of termites: digesting the diversity in the light of ecology and evolution. Annu. Rev. Microbiol. 69. doi: 10.1146/annurev-micro-092412-155715;
  7. биомолекула: «Иммуностимулирующие филаментные бактерии: наконец-то они приручены!»;
  8. биомолекула: «Поиск иголки в стоге сена за 10 минут — подсвети себе LAMPой»;
  9. Han Y.W., Shen T., Chung P., Buhimschi I.A., Buhimschi C.S. (2009). Uncultivated bacteria as etiologic agents of intra-amniotic inflammation leading to preterm birth. J. Clin. Microbiol. 47, 38–47;
  10. Moissl C., Rachel R., Briegel A., Engelhardt H., Huber R. (2005). The unique structure of archaeal «hami», highly complex cell appendages with nano-grappling hooks. Mol. Microbiol56, 361–370;
  11. Perras A.K., Daum B., Ziegler C., Takahashi L.K., Ahmed M., Wanner G. et al. (2015). S-layers at second glance? Altiarchaeal grappling hooks (hami) resemble archaeal S-layer proteins in structure and sequence. Front. Microbiol. 6, 543. doi: 10.3389/fmicb.2015.00543;
  12. Probst A.J. and Moissl-Eichinger C. (2015). «Altiarchaeales»: uncultivated Archaea from the subsurface. Life5, 1381–1395;
  13. биомолекула: «Торжество компьютерных методов: предсказание строения белков»;
  14. Canganella F. and Wiegel J. (2014). Anaerobic thermophiles. Life (Basel). 4, 77–104;
  15. Chung H., Kim T.Y., Lee S.Y. (2012). Recent advances in production of recombinant spiders silk proteins. Curr. Opin. Biotechnol. 23, 957–964.
Автор: Конышев Илья.
http://biomolecula.ru/content/1732.