Темы

C Cеквенирование E E1b1b G I I1 I2 J J1 J2 N N1c Q R1a R1b Y-ДНК Австролоиды Альпийский тип Америнды Англия Антропологическая реконструкция Антропоэстетика Арабы Арменоиды Армия Руси Археология Аудио Аутосомы Африканцы Бактерии Балканы Венгрия Вера Видео Вирусы Вьетнам Гаплогруппы Генетика человека Генетические классификации Геногеография Германцы Гормоны Графики Греция Группы крови ДНК Деградация Демография в России Дерматоглифика Динарская раса Дравиды Древние цивилизации Европа Европейская антропология Европейский генофонд ЖЗЛ Живопись Животные Звёзды кино Здоровье Знаменитости Зодчество Иберия Индия Индоарийцы Интеръер Иран Ирландия Испания Исскуство История Италия Кавказ Канада Карты Кельты Китай Корея Криминал Культура Руси Латинская Америка Летописание Лингвистика Миграция Мимикрия Мифология Модели Монголоидная раса Монголы Мт-ДНК Музыка для души Мутация Народные обычаи и традиции Народонаселение Народы России Наши Города Негроидная раса Немцы Нордиды Одежда на Руси Ориентальная раса Основы Антропологии Основы ДНК-генеалогии и популяционной генетики Остбалты Переднеазиатская раса Пигментация Политика Польша Понтиды Прибалтика Природа Происхождение человека Психология РАСОЛОГИЯ РНК Разное Русская Антропология Русская антропоэстетика Русская генетика Русские поэты и писатели Русский генофонд Русь США Семиты Скандинавы Скифы и Сарматы Славяне Славянская генетика Среднеазиаты Средниземноморская раса Схемы Тохары Тураниды Туризм Тюрки Тюрская антропогенетика Укрология Уралоидный тип Филиппины Фильм Финляндия Фото Франция Храмы Хромосомы Художники России Цыгане Чехия Чухонцы Шотландия Эстетика Этнография Этнопсихология Юмор Япония генетика интеллект научные открытия неандерталeц

Поиск по этому блогу

четверг, 31 марта 2016 г.

Революционное открытие победило синдром Дауна и другие патологии еще в утробе

Мой маленький плод

Фото: Frans Lanting / Globallookpress.com
Биологи обнаружили, что у зародышей есть система безопасности против дефектных клеток с генетическими нарушениями. Даже если такие клетки составляют добрую половину эмбриона, организм сможет избавиться от них и вполне нормально развиваться. Чтобы понять это, ученым пришлось создать химерный зародыш из здоровых и больных клеток. «Лента.ру» ознакомилась с исследованием и выяснила интересные детали.

Если на ранних стадиях развития эмбриона образуются аномальные клетки, это необязательно признак того, что ребенок родится с врожденными пороками. Новое исследование Кембриджского университета раскрывает механизмы, предотвращающие нарушения в развитии организма. Оказывается, аномальные клетки уничтожаются и заменяются здоровыми.
Группа исследователей с кафедры физиологии и нейробиологии изучала эмбрионы мышей, в которых некоторые клетки содержали ненормальное число хромосом. Как правило, в каждой клетке человеческого эмбриона 23 пары хромосом. 22 — аутосомы, парные хромосомы, одинаковые для мужского и женского организма. Одна пара — это половые хромосомы, отличающиеся у мужчин (XY), но одинаковы у женщин (XX). При анеуплоидии возникают изменения в числе хромосом. Например, от пары остается одна хромосома или, наоборот, появляется третья лишняя. Ситуация, когда вместо двух хромосом — три копии одной хромосомы, называется трисомией. Возможны также две (тетрасомия) и три добавочные хромосомы (пентасомия). Анеуплоидия приводит к расстройствам в развитии человека. Самый известный пример — синдром Дауна, при котором у двадцать первой хромосомы три копии.
Беременным женщинам, особенно в возрасте, поскольку их дети наиболее подвержены риску анеуплоидии, предлагают тесты, позволяющие предсказать вероятность генетических аномалий. Между 11-й и 14-й неделями беременности будущей матери могут провести биопсию хориона. Врач извлекает кусочки ткани плаценты, и клетки анализируются на количество хромосом. При другом тесте — амниоцентезе — изучаются клетки из амниотической жидкости (околоплодных вод). Этот тест проводится в течение 15-20 недель беременности, и его результаты более точны.
Внимание авторов нового исследования привлек один случай. Биопсия хориона одной из беременных женщин показала, что около четверти клеток плаценты были с генетическими аномалиями, однако ребенок родился здоровым. Ученые задумались о причине возникновения аномальных клеток в тканях, окружающих эмбрион и о том, в какой степени по ним можно судить о риске патологии.
Аномальные клетки с нарушениями в структуре и количестве хромосом наблюдаются примерно в 80-90 процентах человеческих эмбрионов в предымплантационном периоде беременности, когда оплодотворенная яйцеклетка движется по маточной трубе к матке. Эмбрион содержит как нормальные, так и нездоровые клетки. Это происходит из-за неизбежных ошибок в митозе во время дробления — раннего этапа эмбрионального развития, когда яйцеклетка разделяется на более мелкие клетки или бластомеры. Если в тканях эмбриона находятся генетически различающиеся клетки, говорят о хромосомном мозаицизме. Считается, что именно мозаицизм — основная причина неудачных беременностей при искусственном оплодотворении. Однако, хотя хромосомный мозаицизм очень часто встречается в ранних эмбрионах, на более поздних стадиях он не так выражен.
В своем исследовании команда ученых создала зародышевую химеру — биологическую модель эмбриона мыши с хромосомным мозаицизмом. Использовались здоровые эмбрионы мыши на 8-клеточной стадии, соединенные с эмбрионами мыши с аномальными клетками. На выбор биологического материала повлияло то, что предымплантационное развитие мышиных зародышей очень похоже на человеческое, а уровень хромосомного мозаицизма у мышей гораздо ниже, чем у людей.
Чтобы вызвать образование аномальных клеток с генетическими нарушениями, исследователи обработали эмбрионы реверсином. Это соединение может убивать клетки раковых опухолей, однако также способно индуцировать анеуплоидию. Реверсин подавляет клеточный механизм, проверяющий, все ли хромосомы прикрепились к веретену деления во избежание неправильного распределения хромосом клетки. При обработке реверсином эмбрионов на 4-й и 8-й клеточной стадии большинство клеток становились анеуплоидными.
Обработка эмбрионов реверсином уменьшала количество клеток в каждой из групп, хотя все группы продолжали правильно развиваться и морфология эмбриона оставалась ненарушенной. Однако на поздних стадиях зародыш погибал. Это напоминает судьбу эмбрионов, в чьих клетках отсутствуют гены, участвующие в синтезе кинетохоров — белковых структур на хромосоме, к которым крепятся веретена деления. Для таких эмбрионов характерна мозаичная анеуплоидия, и они гибнут на поздних стадиях развития.
Ученые визуализировали развитие зародышевых химер с помощью замедленной съемки высокого разрешения, позволяющей разглядеть каждую клетку в эмбрионе. Результаты показали, что у эмбрионов, где здоровых и аномальных клеток было поровну, клетки с генетическими нарушениями уничтожались в процессе апоптоза — программируемой гибели клеток, хотя плацентарные клетки сохраняли жизнеспособность. Это позволило нормальным клеткам одержать верх, и все клетки эмбриона оказались здоровыми. В случае, когда на одну здоровую клетку приходилось три аномальных, клетки с нарушениями выжили, однако доля нормальных увеличивалась.
Механизмы, активирующие гибель клеток, определить пока не удалось. Однако проведенное исследование — первое, непосредственно демонстрирующее постепенное исчезновение аномальных клеток из тканей эмбриона на ранних стадиях развития. Также впервые были получены доказательства гипотезы о том, что за гибель клеток с генетическими нарушениями отвечает апоптоз. Интересно то, что когда химерные зародыши с половиной дефектных клеток трансплантировались в матку самок мышей, степень выживаемости эмбрионов оставалась такой же высокой, как и в норме.
Эти результаты имеют большое значение для медицины, в частности для биопсии эмбриональных тканей. Теперь понятно, почему зародыш выживает, хотя анализы тканей плаценты дают плохой прогноз. Также показано, что более надежная биопсия клеток из самой бластоцисты может быть безопасной и ничем не вредить эмбриону.