Темы

C Cеквенирование E E1b1b G I I1 I2 J J1 J2 N N1c Q R1a R1b Y-ДНК Австролоиды Альпийский тип Америнды Англия Антропологическая реконструкция Антропоэстетика Арабы Арменоиды Армия Руси Археология Аудио Аутосомы Африканцы Бактерии Балканы Венгрия Вера Видео Вирусы Вьетнам Гаплогруппы Генетика человека Генетические классификации Геногеография Германцы Гормоны Графики Греция Группы крови ДНК Деградация Демография в России Дерматоглифика Динарская раса Дравиды Древние цивилизации Европа Европейская антропология Европейский генофонд ЖЗЛ Живопись Животные Звёзды кино Здоровье Знаменитости Зодчество Иберия Индия Индоарийцы Интеръер Иран Ирландия Испания Исскуство История Италия Кавказ Канада Карты Кельты Китай Корея Криминал Культура Руси Латинская Америка Летописание Лингвистика Миграция Мимикрия Мифология Модели Монголоидная раса Монголы Мт-ДНК Музыка для души Мутация Народные обычаи и традиции Народонаселение Народы России Наши Города Негроидная раса Немцы Нордиды Одежда на Руси Ориентальная раса Основы Антропологии Основы ДНК-генеалогии и популяционной генетики Остбалты Переднеазиатская раса Пигментация Политика Польша Понтиды Прибалтика Природа Происхождение человека Психология РАСОЛОГИЯ РНК Разное Русская Антропология Русская антропоэстетика Русская генетика Русские поэты и писатели Русский генофонд Русь США Семиты Скандинавы Скифы и Сарматы Славяне Славянская генетика Среднеазиаты Средниземноморская раса Схемы Тохары Тураниды Туризм Тюрки Тюрская антропогенетика Укрология Уралоидный тип Филиппины Фильм Финляндия Фото Франция Храмы Хромосомы Художники России Цыгане Чехия Чухонцы Шотландия Эстетика Этнография Этнопсихология Юмор Япония генетика интеллект научные открытия неандерталeц

Поиск по этому блогу

воскресенье, 17 июля 2016 г.

Нейроны учат новое, не забывая старое


Столкнувшись с изменениями в окружающем мире, отдельные нейроны перенастраивают собственную активность, но при этом они не забывают и те настройки, которые используют «по умолчанию».

Считается, что мозг постоянно меняется – так же, как меняется мир вокруг нас, и если мы сталкиваемся с чем-то новым, с чем-то незнакомым, то благодаря нейронной пластичности мы быстро поймём, как вести себя в этой ситуации.


Нейроны коры мозга мыши. (Фото ZEISS Microscopy / www.flickr.com/photos/zeissmicro/10799674936.)

Под нейронной пластичностью понимают способность межнейронных соединений к перестройке, установление новых связей, появление новых нейронных контуров, предназначенных для решения новой задачи. С другой же стороны, какие-то вещи оказываются настолько нам привычны, что мы делаем их, не задумываясь, и всевозможные сигналы, приходящие в уже взрослый мозг, обрабатываются здесь по привычной, давно установленной схеме.

Как происходит такое усвоение нового без уничтожения старого? Ответ может показаться довольно очевидным: поскольку нейроны могут формировать множество связей, то у каждой клетке есть некий постоянный их набор, своеобразный «костяк синапсов», которые отвечают за давно усвоенную рутину, а вот когда появляется что-то новое, то к старым постоянным связям добавляются свежие, «нестандартные». В теории эта гипотеза существует давно, но лишь сейчас её удалось подтвердить экспериментально.

Исследователи из Института нейробиологии Общества имени Макса Планка ставили опыты с мышами, которым завязывали один глаз, после чего наблюдали за активностью нервных клеток зрительной коры. Известно, что когда в мозг перестают поступать сигналы от одного глаза, то нейроны, которые к нему «приписаны», начинают реагировать на визуальные импульсы, идущие от другого глаза. С новыми генетическими методами стало возможно проследить за активностью отдельных клеток, и оказалось, что совмещение старого и нового, о котором мы только что говорили, происходит в мозге буквально на клеточном уровне.

В статье в Science авторы пишут, что нейроны закрытого глаза, как и ожидалось, переключались на данные от глаза открытого. Но потом, когда закрытый глаз снова открывался, активность нервных клеток возвращалась к прежнему режиму. Отдельные нейроны как бы запоминали прежние настройки, и, когда поток зрительных сигналов возвращался в норму, то есть когда работали снова оба глаза, клетки просто «вспоминали», по какой схеме в таком случае они должны работать.

Нейробиологи подчёркивают тут несколько важных особенностей. Во-первых, перенастройки связей происходили не на уровне клеточных популяций, нейронных кластеров, как ожидалось, а на уровне отдельных клеток. Во-вторых, раз от разу, то есть при повторах эксперимента, изменения касались одних и тех же нейронов, которые составляли около 2/3 от всех клеток зрительной коры. Прочие же либо вообще не обращали никакого внимания на то, что один глаз то закрывается, то открывается, либо реагировали так, что их поведение в рамках рабочей гипотезы объяснить было крайне затруднительно.

Чем занимаются эти клетки и какова их роль в переключении между старым и новым, предстоит выяснить в дальнейших исследованиях.

Автор: Кирилл Стасевич

Источник: nkj.ru

Подробнее см.: https://www.nkj.ru/news/28990/ (Наука и жизнь, Нейроны учат новое, не забывая старое)