Темы

C Cеквенирование E E1b1b G I I1 I2 J J1 J2 N N1c Q R1a R1b Y-ДНК Австролоиды Альпийский тип Америнды Англия Антропологическая реконструкция Антропоэстетика Арабы Арменоиды Армия Руси Археология Аудио Аутосомы Африканцы Бактерии Балканы Венгрия Вера Видео Вирусы Вьетнам Гаплогруппы Генетика человека Генетические классификации Геногеография Германцы Гормоны Графики Греция Группы крови ДНК Деградация Демография в России Дерматоглифика Динарская раса Дравиды Древние цивилизации Европа Европейская антропология Европейский генофонд ЖЗЛ Живопись Животные Звёзды кино Здоровье Знаменитости Зодчество Иберия Индия Индоарийцы Интеръер Иран Ирландия Испания Исскуство История Италия Кавказ Канада Карты Кельты Китай Корея Криминал Культура Руси Латинская Америка Летописание Лингвистика Миграция Мимикрия Мифология Модели Монголоидная раса Монголы Мт-ДНК Музыка для души Мутация Народные обычаи и традиции Народонаселение Народы России Наши Города Негроидная раса Немцы Нордиды Одежда на Руси Ориентальная раса Основы Антропологии Основы ДНК-генеалогии и популяционной генетики Остбалты Переднеазиатская раса Пигментация Политика Польша Понтиды Прибалтика Природа Происхождение человека Психология РАСОЛОГИЯ РНК Разное Русская Антропология Русская антропоэстетика Русская генетика Русские поэты и писатели Русский генофонд Русь США Семиты Скандинавы Скифы и Сарматы Славяне Славянская генетика Среднеазиаты Средниземноморская раса Схемы Тохары Тураниды Туризм Тюрки Тюрская антропогенетика Укрология Уралоидный тип Филиппины Фильм Финляндия Фото Франция Храмы Хромосомы Художники России Цыгане Чехия Чухонцы Шотландия Эстетика Этнография Этнопсихология Юмор Япония генетика интеллект научные открытия неандерталeц

Поиск по этому блогу

суббота, 22 октября 2016 г.

Как многоклеточные научились управлять своими клетками

Прототип молекулярного «пульта управления», с помощью которого многоклеточные управляют своими клетками, есть и у некоторых одноклеточных.

Переход от одноклеточного существования к многоклеточному поставил перед живыми организмами непростую задачу – им нужно было научиться управлять всеми своими клетками так, чтобы они не разбежались и не мешали друг другу.


Амёбы Capsaspora owczarzaki. (Фото Inaki Ruiz-Trillo / Flickr.com)

У современных многоклеточных есть сложная система молекулярных сигналов, с помощью которых клетки общаются между собой: такие сигналы нужны для распределения обязанностей в ходе индивидуального развития (то есть чтобы нейрон стал нейроном, а мышечная клетка – мышечной клеткой), для согласованного ответа в случае неблагоприятных обстоятельств и т. д. Одноклеточным – разнообразным амёбам, инфузориям, фораминиферам и прочим – всё это как будто не нужно по определению, и возникает вопрос, как возникла система управления многоклеточностью – не могла же она упасть с неба.

Однако мы знаем много примеров, когда какое-то приспособление, какая-то молекулярная или структурная уловка в ходе эволюции перепрофилировалась, «модернизировалась» и начинала служить иным задачам. И молекулярно-генетический «пульт управления» множеством клеток на самом деле мог в каком-то виде существовать у одноклеточных. Но для чего он был бы им нужен? Например, для регуляции разных жизненных стадий.

Подробнее см.: http://www.nkj.ru/news/29765/ (Наука и жизнь, Как многоклеточные научились управлять своими клетками)


В статье в Developmental Cell исследователи из Университета Помпеу Фабра рассказывают про амёбу Capsaspora owczarzaki, которая живёт в качестве симбионта в крови (точнее, в гемолимфе) у одной тропической пресноводной улитки. Амёбы в течение жизни проходят через несколько состояний, время от времени собираясь вместе. Очевидно, в зависимости от жизненной стадии у них меняется активность генов, а значит, и набор белков, кодируемых этими генами. Более того, поведение самих белков тоже может меняться.

Активность белков часто зависит от фосфорилирования: когда к белковой молекуле присоединяется или отсоединяется остаток фосфорной кислоты (фосфат), то модифицированная молекула «просыпается» и начинает что-то активно делать или, наоборот, «засыпает». Ферменты, которые навешивают фосфаты на другие белки, называются киназами, и их существует великое множество: они специализируются на разных белках и даже на различных участках внутри одной и той же крупной белковой молекулы, которая, грубо говоря, с разных боков может быть промодифицирована разными киназами. Короче говоря, эти ферменты выполняют очень много сигнально-координирующей работы – как внутри клеток, так и между клетками.

Как оказалось, амёбы C. owczarzaki, переходя из одной стадии в другую, меняют активность генов и ферментов-киназ подобно тому, как оно происходит у многоклеточных. Правда, у многоклеточных различия эти мы видим здесь и сейчас, переходя от одной ткани к другой, от одного органа к другому. Амёбы же используют сходные сигналы при смене фаз жизненного цикла.

В частности, авторы работы описывают изменения амёбных тирозиновых киназ (ферментов, модифицирующих остатком фосфорной кислоты аминокислоту тирозин в белках), которые у многоклеточных широко используются для обмена сообщениями между клетками и которые у одноклеточных, вообще-то, мало активны – просто в силу их одноклеточности. Однако C. owczarzaki мало того, что используют тирозиновые киназы в течение всей жизни – активность ферментов ещё и меняется в зависимости от того, на каком этапе жизни находится амёба.

Пример C. owczarzaki говорит о том, что, по крайней мере, у некоторых одноклеточных есть некоторые наработки, которые, при некотором усовершенствовании могут быть использованы для одновременного управления множеством клеток, составляющих многоклеточный организм. Возможно, нечто подобное можно найти и у других простейших, которые склонны время от времени собираться вместе (вроде слизевиков, которые служат одним из самых распространённых объектов у исследователей, занимающихся вопросами становления многоклеточности).

Также возможно, что в далёком прошлом таким одноклеточным было проще сделать решающий шаг и превратиться в первые многоклеточные организмы. И не стоит так уж удивляться ситуации, когда у относительно простых существ на молекулярном уровне есть «заготовки» для возможного усложнения.

Два года назад мы писали о том, что у примитивных позвоночных во время эмбрионального развития гены работают так, как если бы их мозг был намного сложнее, чем он есть на самом деле, а ещё несколькими годами ранее в журнале Nature выходила работа, в которой говорилось, что у полухордовых животных с очень простой нервной системой есть комплекс сигнальных белков, необходимых для формирования сложного дифференцированного мозга, свойственного хордовым.

По материалам ScienceNews.

Автор: Кирилл Стасевич

Источник: nkj.ru

Подробнее см.: http://www.nkj.ru/news/29765/ (Наука и жизнь, Как многоклеточные научились управлять своими клетками)