Темы

Австролоиды Альпийский тип Америнды Англия Антропологическая реконструкция Антропоэстетика Арабы Арменоиды Армия Руси Археология Аудио Аутосомы Африканцы Бактерии Балканы Венгрия Вера Видео Вирусы Вьетнам Гаплогруппы генетика Генетика человека Генетические классификации Геногеография Германцы Гормоны Графики Греция Группы крови Деградация Демография в России Дерматоглифика Динарская раса ДНК Дравиды Древние цивилизации Европа Европейская антропология Европейский генофонд ЖЗЛ Живопись Животные Звёзды кино Здоровье Знаменитости Зодчество Иберия Индия Индоарийцы интеллект Интеръер Иран Ирландия Испания Исскуство История Италия Кавказ Канада Карты Кельты Китай Корея Криминал Культура Руси Латинская Америка Летописание Лингвистика Миграция Мимикрия Мифология Модели Монголоидная раса Монголы Мт-ДНК Музыка для души Мутация Народные обычаи и традиции Народонаселение Народы России научные открытия Наши Города неандерталeц Негроидная раса Немцы Нордиды Одежда на Руси Ориентальная раса Основы Антропологии Основы ДНК-генеалогии и популяционной генетики Остбалты Переднеазиатская раса Пигментация Политика Польша Понтиды Прибалтика Природа Происхождение человека Психология Разное РАСОЛОГИЯ РНК Русская Антропология Русская антропоэстетика Русская генетика Русские поэты и писатели Русский генофонд Русь Семиты Скандинавы Скифы и Сарматы Славяне Славянская генетика Среднеазиаты Средниземноморская раса Схемы США Тохары Тураниды Туризм Тюрки Тюрская антропогенетика Укрология Уралоидный тип Филиппины Фильм Финляндия Фото Франция Храмы Хромосомы Художники России Цыгане Чехия Чухонцы Шотландия Эстетика Этнография Этнопсихология Юмор Япония C Cеквенирование E E1b1b G I I1 I2 J J1 J2 N N1c Q R1a R1b Y-ДНК

Поиск по этому блогу

четверг, 27 октября 2011 г.

Y-хромосома


Материал из Википедии — свободной энциклопедии

Y-хромосома человека
Y-хромосома — половая хромосома большинства млекопитающих, в том числе человека. Содержит ген SRY, определяющий мужской пол организма, а также гены, необходимые для нормального формирования сперматозоидов. Мутации в гене SRY могут привести к формированию женского организма с генотипом XY (Синдром Суайра). Y-хромосома человека состоит приблизительно из 58 миллионов пар азотистых оснований.

Содержание

   
  • 1 Общие сведения
  • 2 Происхождение и эволюция
    • 2.1 До появления Y хромосомы
    • 2.2 Происхождение
    • 2.3 Ингибирование рекомбинации
    • 2.4 Сжатие
  • 3 Y-хромосома человека
  • 4 См. также
  • 5 Ссылки
  • 6 Источники


Общие сведения

Клетки большинства млекопитающих содержат две половых хромосомы — Y-хромосома и X-хромосома у самцов, две X-хромосомы у самок. У некоторых млекопитающих, например, утконоса, пол определяется не одной, а пятью парами половых хромосом[1]. При этом, половые хромосомы утконоса имеют больше сходства с Z-хромосомой птиц[2], а ген SRY, вероятно, не участвует в его половой дифференциации[3].
В человеческой популяции клетки некоторых мужчин содержат две X-хромосомы и одну Y-хромосому или одну X-хромосому и две Y-хромосомы (см. синдром Клайнфельтера); клетки некоторых женщин содержат три или одну X-хромосомы (см. синдром Шерешевского — Тернера). В некоторых случаях наблюдается повреждение гена SRY (с формированием женского XY организма) или его копирование на X-хромосому (с формированием мужского XX организма) (см. также Интерсексуальность).


Происхождение и эволюция


До появления Y хромосомы

У многих эктотермных позвоночных отсутствуют половые хромосомы. Если у них имеются два пола, то пол определяется в большей степени условиями среды, чем генетически. У некоторых из них, в частности рептилий, пол зависит от температуры инкубации; другие являются гермафродитами (то есть каждая особь содержит как мужские, так и женские гаметы).


Происхождение

Считается что, X и Y хромосомы произошли от пары идентичных хромосом[4], называемых аутосомами, когда у древних млекопитающих развилось аллельное разнообразие, наличие так называемого аллеля «полового локуса» приводило к развитию организма мужского пола[5]. Хромосомы, несущие этот алелль, стали Y хромосомами, а вторая хромосома в этой паре стала X хромосомой. C течением времени, гены полезные для самцов и вредные (либо не имеющие никакого эффекта) для самок либо развивались в Y хромосоме, либо были приобретены в процессе транслокации[6].
До недавних пор считались, что X и Y хромосомы появились около 300 миллионов лет назад. Однако недавние исследования[7], в частности секвенирование генома утконоса[2], показывают, что хромосомное определение пола отсутствовало еще 166 миллионов лет назад, при отделении однопроходных от других млекопитающих[3]. Эта переоценка возраста хромосомной системы определения пола базируется на исследованиях, показавших, что последовательности в X хромосоме сумчатых и плацентарных млекопитающих присутствуют в аутосомах утконоса и птиц[3]. Более старая оценка базировалась на ошибочных сообщениях о наличии этих последовательностей в X хромосоме утконоса[8][9].


Ингибирование рекомбинации

Доказано, что рекомбинация между X и Y хромосомами вредна — она приводит к появлению самцов без необходимых генов в Y хромосоме, и самок с ненужными или даже вредными генами, до этого находящимися только в Y хромосоме. В результате гены полезные самцам накапливались возле определяющих пол генов, и рекомбинация в этой части хромосомы была подавлена для сохранения этого, присущего только самцам района[5]. С течением времени, Y хромосома изменялась в сторону полного ингибирования рекомбинации районов прилежащих к генам, определяющим пол, с X хромосомой. В результате этого процесса 95 % человеческой Y хромосомы не способно к рекомбинации.


Сжатие

Y хромосома человека потеряла 1393 из 1438 изначально имеющихся в ней генов в процессе своего существования. При скорости потери генов 4,6 на миллион лет, Y хромосома человека потенциально может полностью потерять свою функцию в течение следующих 10 миллионов лет[10]. Сравнительный геномный анализ, однако, показывает что многие виды млекопитающих испытывают подобную потерю функций в их гетерозиготных половых хромосомах. Дегенерация возможно является судьбой всех нерекомбинантных половых хромосом из-за трёх общих эволюционных сил: высокой скорости мутирования, неэффективного отбора и генетического дрейфа[11]. С другой стороны, недавние сравнения Y хромосомы человека и шимпанзе показали, что человеческая Y хромосома не потеряла ни одного гена с момента дивергенции человека и шимпанзе около 6—7 миллионов лет назад[12], что доказывает возможную ошибочность модели линейной экстраполяции.
Высокая скорость мутирования
Человеческая Y хромосома частично подвержена высокой скорости мутирования в связи со средой в которой она находится. Y хромосома передается исключительно через сперматозоиды, которые подвергаются множественным клеточным делениям в процессе гаметогенеза. Каждое клеточное деление предоставляет дополнительную возможность для накопления мутаций пар оснований. К тому же сперматозоиды находятся в высокоокислительной среде яичек, которая стимулирует усиление мутирования. Эти два условия вместе повышают риск мутирования Y хромосомы в 4,8 раза по сравнению с остальным геномом[11].


Y-хромосома человека

У человека Y-хромосома состоит из 58 миллионов пар азотистых оснований, и несёт приблизительно 2 % ДНК-материала клетки человека[13]. Хромосома содержит 86 генов[14], которые кодируют 23 белка. Признаки, наследуемые через Y-хромосому, носят название голандрических.
Человеческая Y-хромосома не способна рекомбинироваться с X-хромосомой, за исключением небольших псевдоаутосомных участков на теломерах (которые составляют около 5 % длины хромосомы). Это реликтовые участки древнейгомологии между X и Y хромосомами. Основная часть Y-хромосомы, которая не подвержена рекомбинации, называется NRY (англ. non-recombining region of the Y chromosome)[15]. Эта часть Y-хромосомы позволяет посредством оценкиоднонуклеотидного полиморфизма определить прямых предков по отцовской линии.


См. также


Ссылки


Источники

  1.  Grützner F, Rens W, Tsend-Ayush E, et al. (2004). «In the platypus a meiotic chain of ten sex chromosomes shares genes with the bird Z and mammal X chromosomes». Nature 432: 913–917. DOI:10.1038/nature03021.
  2. ↑ 1 2 Warren WC, Hillier LDW, Graves JAM, et al. (2008). «Genome analysis of the platypus reveals unique signatures of evolution». Nature 453: 175–183. DOI:10.1038/nature06936.
  3. ↑ 1 2 3 Veyrunes F, Waters PD, Miethke P, et al. (2008). «Bird-like sex chromosomes of platypus imply recent origin of mammal sex chromosomes». Genome Research 18: 965–973. DOI:10.1101/gr.7101908.
  4.  Lahn B, Page D (1999). «Four evolutionary strata on the human X chromosome». Science 286 (5441): 964–7. DOI:10.1126/science.286.5441.964PMID 10542153.
  5. ↑ 1 2 Graves J.A.M. (2006). «Sex chromosome specialization and degeneration in mammals». Cell 124 (5): 901–14. DOI:10.1016/j.cell.2006.02.024PMID 16530039.
  6.  Graves J.A.M., Koina E., Sankovic N. (2006). «How the gene content of human sex chromosomes evolved». Curr Opin Genet Dev 16 (3): 219–24. DOI:10.1016/j.gde.2006.04.007PMID 16650758.
  7.  Human Male Still A Work in Progress
  8.  Nature 432, 913—917 (16 December 2004) | doi:10.1038/nature03021
  9.  DOI 10.1007/BF00360536
  10.  Graves, J.A.M. 2004. The degenerate Y chromosome- can conversion save it? Reproduction Fertility and Development 16:527-534.
  11. ↑ 1 2 Graves, J.A.M. 2006. Sex chromosome specialization and degeneration in mammals. Cell 124:901-914
  12.  Conservation of Y-linked genes during human evolut… [Nature. 2005] — PubMed result
  13.  National Library of Medicine’s Genetic Home Reference
  14.  Ensembl Human MapView release 43 (February 2007). Проверено 14 апреля 2007.
  15.  ScienceDaily.com Apr. 3, 2008